Integer multiplication in time O(n log n)
We present an algorithm that computes the product of two n-bit integers in O(n log n) bit operations, thus confirming a conjecture of Schönhage and Strassen from 1971. Our complexity analysis takes place in the multitape Turing machine model, with integers encoded in the usual binary representation....
Gespeichert in:
Veröffentlicht in: | Annals of mathematics 2021-03, Vol.193 (2), p.563-617 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 617 |
---|---|
container_issue | 2 |
container_start_page | 563 |
container_title | Annals of mathematics |
container_volume | 193 |
creator | Harvey, David van der Hoeven, Joris |
description | We present an algorithm that computes the product of two n-bit integers in O(n log n) bit operations, thus confirming a conjecture of Schönhage and Strassen from 1971. Our complexity analysis takes place in the multitape Turing machine model, with integers encoded in the usual binary representation. Central to the new algorithm is a novel “Gaussian resampling” technique that enables us to reduce the integer multiplication problem to a collection of multidimensional discrete Fourier transforms over the complex numbers, whose dimensions are all powers of two. These transforms may then be evaluated rapidly by means of Nussbaumer's fast polynomial transforms. |
doi_str_mv | 10.4007/annals.2021.193.2.4 |
format | Article |
fullrecord | <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02070778v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>10.4007/annals.2021.193.2.4</jstor_id><sourcerecordid>10.4007/annals.2021.193.2.4</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-1d281677c2ba4ffa44e5d037e7ce350beb7d6bb90f217da38db374f05f3f8cfd3</originalsourceid><addsrcrecordid>eNptkE1LxDAQhoMoWFd_gZcct4fWyUeb9Lgs6i4U9qLgLaRtsmZp06Wtgv_elMqePGUyvM_M8CD0SCDlAOJJe6_bMaVASUoKltKUX6EoVEUiCwnXKAIAlnCZf9yiu3E8ha8QuYhQvPeTOZoBd1_t5M6tq_Xkeo-dx5PrDD6sPW77I_bxPbqxYYl5-HtX6P3l-W27S8rD6367KZOa5WRKSEMlyYWoaaW5tZpzkzXAhBG1YRlUphJNXlUFWEpEo5lsKia4hcwyK2vbsBWKl7mfulXnwXV6-FG9dmq3KdXcAwoiXC-_aciyJVsP_TgOxl4AAmo2oxYzajajgg9FFQ_UeqFO49QPF-S_6C8FfGUF</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Integer multiplication in time O(n log n)</title><source>Alma/SFX Local Collection</source><creator>Harvey, David ; van der Hoeven, Joris</creator><creatorcontrib>Harvey, David ; van der Hoeven, Joris</creatorcontrib><description>We present an algorithm that computes the product of two n-bit integers in O(n log n) bit operations, thus confirming a conjecture of Schönhage and Strassen from 1971. Our complexity analysis takes place in the multitape Turing machine model, with integers encoded in the usual binary representation. Central to the new algorithm is a novel “Gaussian resampling” technique that enables us to reduce the integer multiplication problem to a collection of multidimensional discrete Fourier transforms over the complex numbers, whose dimensions are all powers of two. These transforms may then be evaluated rapidly by means of Nussbaumer's fast polynomial transforms.</description><identifier>ISSN: 0003-486X</identifier><identifier>EISSN: 1939-8980</identifier><identifier>DOI: 10.4007/annals.2021.193.2.4</identifier><language>eng</language><publisher>Annals of Mathematics</publisher><subject>Computational Complexity ; Computer Arithmetic ; Computer Science ; Data Structures and Algorithms ; Mathematics ; Number Theory ; Numerical Analysis ; Symbolic Computation</subject><ispartof>Annals of mathematics, 2021-03, Vol.193 (2), p.563-617</ispartof><rights>2021 Department of Mathematics, Princeton University</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-1d281677c2ba4ffa44e5d037e7ce350beb7d6bb90f217da38db374f05f3f8cfd3</citedby><orcidid>0000-0003-2244-1897</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02070778$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Harvey, David</creatorcontrib><creatorcontrib>van der Hoeven, Joris</creatorcontrib><title>Integer multiplication in time O(n log n)</title><title>Annals of mathematics</title><description>We present an algorithm that computes the product of two n-bit integers in O(n log n) bit operations, thus confirming a conjecture of Schönhage and Strassen from 1971. Our complexity analysis takes place in the multitape Turing machine model, with integers encoded in the usual binary representation. Central to the new algorithm is a novel “Gaussian resampling” technique that enables us to reduce the integer multiplication problem to a collection of multidimensional discrete Fourier transforms over the complex numbers, whose dimensions are all powers of two. These transforms may then be evaluated rapidly by means of Nussbaumer's fast polynomial transforms.</description><subject>Computational Complexity</subject><subject>Computer Arithmetic</subject><subject>Computer Science</subject><subject>Data Structures and Algorithms</subject><subject>Mathematics</subject><subject>Number Theory</subject><subject>Numerical Analysis</subject><subject>Symbolic Computation</subject><issn>0003-486X</issn><issn>1939-8980</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNptkE1LxDAQhoMoWFd_gZcct4fWyUeb9Lgs6i4U9qLgLaRtsmZp06Wtgv_elMqePGUyvM_M8CD0SCDlAOJJe6_bMaVASUoKltKUX6EoVEUiCwnXKAIAlnCZf9yiu3E8ha8QuYhQvPeTOZoBd1_t5M6tq_Xkeo-dx5PrDD6sPW77I_bxPbqxYYl5-HtX6P3l-W27S8rD6367KZOa5WRKSEMlyYWoaaW5tZpzkzXAhBG1YRlUphJNXlUFWEpEo5lsKia4hcwyK2vbsBWKl7mfulXnwXV6-FG9dmq3KdXcAwoiXC-_aciyJVsP_TgOxl4AAmo2oxYzajajgg9FFQ_UeqFO49QPF-S_6C8FfGUF</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Harvey, David</creator><creator>van der Hoeven, Joris</creator><general>Annals of Mathematics</general><general>Princeton University, Department of Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-2244-1897</orcidid></search><sort><creationdate>20210301</creationdate><title>Integer multiplication in time O(n log n)</title><author>Harvey, David ; van der Hoeven, Joris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-1d281677c2ba4ffa44e5d037e7ce350beb7d6bb90f217da38db374f05f3f8cfd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computational Complexity</topic><topic>Computer Arithmetic</topic><topic>Computer Science</topic><topic>Data Structures and Algorithms</topic><topic>Mathematics</topic><topic>Number Theory</topic><topic>Numerical Analysis</topic><topic>Symbolic Computation</topic><toplevel>online_resources</toplevel><creatorcontrib>Harvey, David</creatorcontrib><creatorcontrib>van der Hoeven, Joris</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Annals of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harvey, David</au><au>van der Hoeven, Joris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integer multiplication in time O(n log n)</atitle><jtitle>Annals of mathematics</jtitle><date>2021-03-01</date><risdate>2021</risdate><volume>193</volume><issue>2</issue><spage>563</spage><epage>617</epage><pages>563-617</pages><issn>0003-486X</issn><eissn>1939-8980</eissn><abstract>We present an algorithm that computes the product of two n-bit integers in O(n log n) bit operations, thus confirming a conjecture of Schönhage and Strassen from 1971. Our complexity analysis takes place in the multitape Turing machine model, with integers encoded in the usual binary representation. Central to the new algorithm is a novel “Gaussian resampling” technique that enables us to reduce the integer multiplication problem to a collection of multidimensional discrete Fourier transforms over the complex numbers, whose dimensions are all powers of two. These transforms may then be evaluated rapidly by means of Nussbaumer's fast polynomial transforms.</abstract><pub>Annals of Mathematics</pub><doi>10.4007/annals.2021.193.2.4</doi><tpages>55</tpages><orcidid>https://orcid.org/0000-0003-2244-1897</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-486X |
ispartof | Annals of mathematics, 2021-03, Vol.193 (2), p.563-617 |
issn | 0003-486X 1939-8980 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02070778v2 |
source | Alma/SFX Local Collection |
subjects | Computational Complexity Computer Arithmetic Computer Science Data Structures and Algorithms Mathematics Number Theory Numerical Analysis Symbolic Computation |
title | Integer multiplication in time O(n log n) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T22%3A40%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integer%20multiplication%20in%20time%20O(n%20log%20n)&rft.jtitle=Annals%20of%20mathematics&rft.au=Harvey,%20David&rft.date=2021-03-01&rft.volume=193&rft.issue=2&rft.spage=563&rft.epage=617&rft.pages=563-617&rft.issn=0003-486X&rft.eissn=1939-8980&rft_id=info:doi/10.4007/annals.2021.193.2.4&rft_dat=%3Cjstor_hal_p%3E10.4007/annals.2021.193.2.4%3C/jstor_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=10.4007/annals.2021.193.2.4&rfr_iscdi=true |