Integer multiplication in time O(n log n)

We present an algorithm that computes the product of two n-bit integers in O(n log n) bit operations, thus confirming a conjecture of Schönhage and Strassen from 1971. Our complexity analysis takes place in the multitape Turing machine model, with integers encoded in the usual binary representation....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annals of mathematics 2021-03, Vol.193 (2), p.563-617
Hauptverfasser: Harvey, David, van der Hoeven, Joris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 617
container_issue 2
container_start_page 563
container_title Annals of mathematics
container_volume 193
creator Harvey, David
van der Hoeven, Joris
description We present an algorithm that computes the product of two n-bit integers in O(n log n) bit operations, thus confirming a conjecture of Schönhage and Strassen from 1971. Our complexity analysis takes place in the multitape Turing machine model, with integers encoded in the usual binary representation. Central to the new algorithm is a novel “Gaussian resampling” technique that enables us to reduce the integer multiplication problem to a collection of multidimensional discrete Fourier transforms over the complex numbers, whose dimensions are all powers of two. These transforms may then be evaluated rapidly by means of Nussbaumer's fast polynomial transforms.
doi_str_mv 10.4007/annals.2021.193.2.4
format Article
fullrecord <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02070778v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>10.4007/annals.2021.193.2.4</jstor_id><sourcerecordid>10.4007/annals.2021.193.2.4</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-1d281677c2ba4ffa44e5d037e7ce350beb7d6bb90f217da38db374f05f3f8cfd3</originalsourceid><addsrcrecordid>eNptkE1LxDAQhoMoWFd_gZcct4fWyUeb9Lgs6i4U9qLgLaRtsmZp06Wtgv_elMqePGUyvM_M8CD0SCDlAOJJe6_bMaVASUoKltKUX6EoVEUiCwnXKAIAlnCZf9yiu3E8ha8QuYhQvPeTOZoBd1_t5M6tq_Xkeo-dx5PrDD6sPW77I_bxPbqxYYl5-HtX6P3l-W27S8rD6367KZOa5WRKSEMlyYWoaaW5tZpzkzXAhBG1YRlUphJNXlUFWEpEo5lsKia4hcwyK2vbsBWKl7mfulXnwXV6-FG9dmq3KdXcAwoiXC-_aciyJVsP_TgOxl4AAmo2oxYzajajgg9FFQ_UeqFO49QPF-S_6C8FfGUF</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Integer multiplication in time O(n log n)</title><source>Alma/SFX Local Collection</source><creator>Harvey, David ; van der Hoeven, Joris</creator><creatorcontrib>Harvey, David ; van der Hoeven, Joris</creatorcontrib><description>We present an algorithm that computes the product of two n-bit integers in O(n log n) bit operations, thus confirming a conjecture of Schönhage and Strassen from 1971. Our complexity analysis takes place in the multitape Turing machine model, with integers encoded in the usual binary representation. Central to the new algorithm is a novel “Gaussian resampling” technique that enables us to reduce the integer multiplication problem to a collection of multidimensional discrete Fourier transforms over the complex numbers, whose dimensions are all powers of two. These transforms may then be evaluated rapidly by means of Nussbaumer's fast polynomial transforms.</description><identifier>ISSN: 0003-486X</identifier><identifier>EISSN: 1939-8980</identifier><identifier>DOI: 10.4007/annals.2021.193.2.4</identifier><language>eng</language><publisher>Annals of Mathematics</publisher><subject>Computational Complexity ; Computer Arithmetic ; Computer Science ; Data Structures and Algorithms ; Mathematics ; Number Theory ; Numerical Analysis ; Symbolic Computation</subject><ispartof>Annals of mathematics, 2021-03, Vol.193 (2), p.563-617</ispartof><rights>2021 Department of Mathematics, Princeton University</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-1d281677c2ba4ffa44e5d037e7ce350beb7d6bb90f217da38db374f05f3f8cfd3</citedby><orcidid>0000-0003-2244-1897</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02070778$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Harvey, David</creatorcontrib><creatorcontrib>van der Hoeven, Joris</creatorcontrib><title>Integer multiplication in time O(n log n)</title><title>Annals of mathematics</title><description>We present an algorithm that computes the product of two n-bit integers in O(n log n) bit operations, thus confirming a conjecture of Schönhage and Strassen from 1971. Our complexity analysis takes place in the multitape Turing machine model, with integers encoded in the usual binary representation. Central to the new algorithm is a novel “Gaussian resampling” technique that enables us to reduce the integer multiplication problem to a collection of multidimensional discrete Fourier transforms over the complex numbers, whose dimensions are all powers of two. These transforms may then be evaluated rapidly by means of Nussbaumer's fast polynomial transforms.</description><subject>Computational Complexity</subject><subject>Computer Arithmetic</subject><subject>Computer Science</subject><subject>Data Structures and Algorithms</subject><subject>Mathematics</subject><subject>Number Theory</subject><subject>Numerical Analysis</subject><subject>Symbolic Computation</subject><issn>0003-486X</issn><issn>1939-8980</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNptkE1LxDAQhoMoWFd_gZcct4fWyUeb9Lgs6i4U9qLgLaRtsmZp06Wtgv_elMqePGUyvM_M8CD0SCDlAOJJe6_bMaVASUoKltKUX6EoVEUiCwnXKAIAlnCZf9yiu3E8ha8QuYhQvPeTOZoBd1_t5M6tq_Xkeo-dx5PrDD6sPW77I_bxPbqxYYl5-HtX6P3l-W27S8rD6367KZOa5WRKSEMlyYWoaaW5tZpzkzXAhBG1YRlUphJNXlUFWEpEo5lsKia4hcwyK2vbsBWKl7mfulXnwXV6-FG9dmq3KdXcAwoiXC-_aciyJVsP_TgOxl4AAmo2oxYzajajgg9FFQ_UeqFO49QPF-S_6C8FfGUF</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Harvey, David</creator><creator>van der Hoeven, Joris</creator><general>Annals of Mathematics</general><general>Princeton University, Department of Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-2244-1897</orcidid></search><sort><creationdate>20210301</creationdate><title>Integer multiplication in time O(n log n)</title><author>Harvey, David ; van der Hoeven, Joris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-1d281677c2ba4ffa44e5d037e7ce350beb7d6bb90f217da38db374f05f3f8cfd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computational Complexity</topic><topic>Computer Arithmetic</topic><topic>Computer Science</topic><topic>Data Structures and Algorithms</topic><topic>Mathematics</topic><topic>Number Theory</topic><topic>Numerical Analysis</topic><topic>Symbolic Computation</topic><toplevel>online_resources</toplevel><creatorcontrib>Harvey, David</creatorcontrib><creatorcontrib>van der Hoeven, Joris</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Annals of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harvey, David</au><au>van der Hoeven, Joris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integer multiplication in time O(n log n)</atitle><jtitle>Annals of mathematics</jtitle><date>2021-03-01</date><risdate>2021</risdate><volume>193</volume><issue>2</issue><spage>563</spage><epage>617</epage><pages>563-617</pages><issn>0003-486X</issn><eissn>1939-8980</eissn><abstract>We present an algorithm that computes the product of two n-bit integers in O(n log n) bit operations, thus confirming a conjecture of Schönhage and Strassen from 1971. Our complexity analysis takes place in the multitape Turing machine model, with integers encoded in the usual binary representation. Central to the new algorithm is a novel “Gaussian resampling” technique that enables us to reduce the integer multiplication problem to a collection of multidimensional discrete Fourier transforms over the complex numbers, whose dimensions are all powers of two. These transforms may then be evaluated rapidly by means of Nussbaumer's fast polynomial transforms.</abstract><pub>Annals of Mathematics</pub><doi>10.4007/annals.2021.193.2.4</doi><tpages>55</tpages><orcidid>https://orcid.org/0000-0003-2244-1897</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-486X
ispartof Annals of mathematics, 2021-03, Vol.193 (2), p.563-617
issn 0003-486X
1939-8980
language eng
recordid cdi_hal_primary_oai_HAL_hal_02070778v2
source Alma/SFX Local Collection
subjects Computational Complexity
Computer Arithmetic
Computer Science
Data Structures and Algorithms
Mathematics
Number Theory
Numerical Analysis
Symbolic Computation
title Integer multiplication in time O(n log n)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T22%3A40%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integer%20multiplication%20in%20time%20O(n%20log%20n)&rft.jtitle=Annals%20of%20mathematics&rft.au=Harvey,%20David&rft.date=2021-03-01&rft.volume=193&rft.issue=2&rft.spage=563&rft.epage=617&rft.pages=563-617&rft.issn=0003-486X&rft.eissn=1939-8980&rft_id=info:doi/10.4007/annals.2021.193.2.4&rft_dat=%3Cjstor_hal_p%3E10.4007/annals.2021.193.2.4%3C/jstor_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=10.4007/annals.2021.193.2.4&rfr_iscdi=true