Propagation of Chaos and Poisson Hypothesis
We establish the strong Poisson hypothesis for symmetric closed networks. In particular, we prove asymptotic independence of nodes as the size of the system tends to infinity.
Gespeichert in:
Veröffentlicht in: | Problems of information transmission 2018-07, Vol.54 (3), p.290-299 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 299 |
---|---|
container_issue | 3 |
container_start_page | 290 |
container_title | Problems of information transmission |
container_volume | 54 |
creator | Vladimirov, A. A. Pirogov, S. A. Rybko, A. N. Shlosman, S. B. |
description | We establish the strong Poisson hypothesis for symmetric closed networks. In particular, we prove asymptotic independence of nodes as the size of the system tends to infinity. |
doi_str_mv | 10.1134/S0032946018030080 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02068983v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2119333457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-1954cb690110b3e23398721334bcf28bb2bf21027c0922dbd9af3d003d807fca3</originalsourceid><addsrcrecordid>eNp1kE9Lw0AQxRdRsFY_gLeAJ5HozE6a7B5LUSsELKjnZfNn25Sajbup0G_vhogexNPAvN978xjGLhFuESm5ewEgLpMUUAABCDhiE0xBxMRndMwmgxwP-ik7834LgAAJTdjNytlOr3Xf2DayJlpstPWRbqtoZRvvw3J56Gy_qX3jz9mJ0TtfX3zPKXt7uH9dLOP8-fFpMc_jkiT1McpZUhapBEQoqOZEUmQciZKiNFwUBS8MR-BZCZLzqqikNlSFgpWAzJSapux6zN3onepc867dQVndqOU8V8MOOKRCCvrEwF6NbOfsx772vdravWtDPcURJYWrsyxQOFKls9672vzEIqjhf-rP_4KHjx4f2HZdu9_k_01fwONt_g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2119333457</pqid></control><display><type>article</type><title>Propagation of Chaos and Poisson Hypothesis</title><source>SpringerLink Journals - AutoHoldings</source><creator>Vladimirov, A. A. ; Pirogov, S. A. ; Rybko, A. N. ; Shlosman, S. B.</creator><creatorcontrib>Vladimirov, A. A. ; Pirogov, S. A. ; Rybko, A. N. ; Shlosman, S. B.</creatorcontrib><description>We establish the strong Poisson hypothesis for symmetric closed networks. In particular, we prove asymptotic independence of nodes as the size of the system tends to infinity.</description><identifier>ISSN: 0032-9460</identifier><identifier>EISSN: 1608-3253</identifier><identifier>DOI: 10.1134/S0032946018030080</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Communication Network Theory ; Communications Engineering ; Control ; Electrical Engineering ; Engineering ; Hypotheses ; Information Storage and Retrieval ; Mathematics ; Networks ; Probability ; Systems Theory</subject><ispartof>Problems of information transmission, 2018-07, Vol.54 (3), p.290-299</ispartof><rights>Pleiades Publishing, Inc. 2018</rights><rights>Copyright Springer Science & Business Media 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-1954cb690110b3e23398721334bcf28bb2bf21027c0922dbd9af3d003d807fca3</citedby><cites>FETCH-LOGICAL-c393t-1954cb690110b3e23398721334bcf28bb2bf21027c0922dbd9af3d003d807fca3</cites><orcidid>0000-0003-4909-934X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0032946018030080$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0032946018030080$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02068983$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Vladimirov, A. A.</creatorcontrib><creatorcontrib>Pirogov, S. A.</creatorcontrib><creatorcontrib>Rybko, A. N.</creatorcontrib><creatorcontrib>Shlosman, S. B.</creatorcontrib><title>Propagation of Chaos and Poisson Hypothesis</title><title>Problems of information transmission</title><addtitle>Probl Inf Transm</addtitle><description>We establish the strong Poisson hypothesis for symmetric closed networks. In particular, we prove asymptotic independence of nodes as the size of the system tends to infinity.</description><subject>Communication Network Theory</subject><subject>Communications Engineering</subject><subject>Control</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Hypotheses</subject><subject>Information Storage and Retrieval</subject><subject>Mathematics</subject><subject>Networks</subject><subject>Probability</subject><subject>Systems Theory</subject><issn>0032-9460</issn><issn>1608-3253</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE9Lw0AQxRdRsFY_gLeAJ5HozE6a7B5LUSsELKjnZfNn25Sajbup0G_vhogexNPAvN978xjGLhFuESm5ewEgLpMUUAABCDhiE0xBxMRndMwmgxwP-ik7834LgAAJTdjNytlOr3Xf2DayJlpstPWRbqtoZRvvw3J56Gy_qX3jz9mJ0TtfX3zPKXt7uH9dLOP8-fFpMc_jkiT1McpZUhapBEQoqOZEUmQciZKiNFwUBS8MR-BZCZLzqqikNlSFgpWAzJSapux6zN3onepc867dQVndqOU8V8MOOKRCCvrEwF6NbOfsx772vdravWtDPcURJYWrsyxQOFKls9672vzEIqjhf-rP_4KHjx4f2HZdu9_k_01fwONt_g</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Vladimirov, A. A.</creator><creator>Pirogov, S. A.</creator><creator>Rybko, A. N.</creator><creator>Shlosman, S. B.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><general>MAIK Nauka/Interperiodica</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-4909-934X</orcidid></search><sort><creationdate>20180701</creationdate><title>Propagation of Chaos and Poisson Hypothesis</title><author>Vladimirov, A. A. ; Pirogov, S. A. ; Rybko, A. N. ; Shlosman, S. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-1954cb690110b3e23398721334bcf28bb2bf21027c0922dbd9af3d003d807fca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Communication Network Theory</topic><topic>Communications Engineering</topic><topic>Control</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Hypotheses</topic><topic>Information Storage and Retrieval</topic><topic>Mathematics</topic><topic>Networks</topic><topic>Probability</topic><topic>Systems Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vladimirov, A. A.</creatorcontrib><creatorcontrib>Pirogov, S. A.</creatorcontrib><creatorcontrib>Rybko, A. N.</creatorcontrib><creatorcontrib>Shlosman, S. B.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Problems of information transmission</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vladimirov, A. A.</au><au>Pirogov, S. A.</au><au>Rybko, A. N.</au><au>Shlosman, S. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Propagation of Chaos and Poisson Hypothesis</atitle><jtitle>Problems of information transmission</jtitle><stitle>Probl Inf Transm</stitle><date>2018-07-01</date><risdate>2018</risdate><volume>54</volume><issue>3</issue><spage>290</spage><epage>299</epage><pages>290-299</pages><issn>0032-9460</issn><eissn>1608-3253</eissn><abstract>We establish the strong Poisson hypothesis for symmetric closed networks. In particular, we prove asymptotic independence of nodes as the size of the system tends to infinity.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0032946018030080</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4909-934X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-9460 |
ispartof | Problems of information transmission, 2018-07, Vol.54 (3), p.290-299 |
issn | 0032-9460 1608-3253 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02068983v1 |
source | SpringerLink Journals - AutoHoldings |
subjects | Communication Network Theory Communications Engineering Control Electrical Engineering Engineering Hypotheses Information Storage and Retrieval Mathematics Networks Probability Systems Theory |
title | Propagation of Chaos and Poisson Hypothesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T07%3A57%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Propagation%20of%20Chaos%20and%20Poisson%20Hypothesis&rft.jtitle=Problems%20of%20information%20transmission&rft.au=Vladimirov,%20A.%20A.&rft.date=2018-07-01&rft.volume=54&rft.issue=3&rft.spage=290&rft.epage=299&rft.pages=290-299&rft.issn=0032-9460&rft.eissn=1608-3253&rft_id=info:doi/10.1134/S0032946018030080&rft_dat=%3Cproquest_hal_p%3E2119333457%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2119333457&rft_id=info:pmid/&rfr_iscdi=true |