Propagation of Chaos and Poisson Hypothesis

We establish the strong Poisson hypothesis for symmetric closed networks. In particular, we prove asymptotic independence of nodes as the size of the system tends to infinity.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Problems of information transmission 2018-07, Vol.54 (3), p.290-299
Hauptverfasser: Vladimirov, A. A., Pirogov, S. A., Rybko, A. N., Shlosman, S. B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 299
container_issue 3
container_start_page 290
container_title Problems of information transmission
container_volume 54
creator Vladimirov, A. A.
Pirogov, S. A.
Rybko, A. N.
Shlosman, S. B.
description We establish the strong Poisson hypothesis for symmetric closed networks. In particular, we prove asymptotic independence of nodes as the size of the system tends to infinity.
doi_str_mv 10.1134/S0032946018030080
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02068983v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2119333457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-1954cb690110b3e23398721334bcf28bb2bf21027c0922dbd9af3d003d807fca3</originalsourceid><addsrcrecordid>eNp1kE9Lw0AQxRdRsFY_gLeAJ5HozE6a7B5LUSsELKjnZfNn25Sajbup0G_vhogexNPAvN978xjGLhFuESm5ewEgLpMUUAABCDhiE0xBxMRndMwmgxwP-ik7834LgAAJTdjNytlOr3Xf2DayJlpstPWRbqtoZRvvw3J56Gy_qX3jz9mJ0TtfX3zPKXt7uH9dLOP8-fFpMc_jkiT1McpZUhapBEQoqOZEUmQciZKiNFwUBS8MR-BZCZLzqqikNlSFgpWAzJSapux6zN3onepc867dQVndqOU8V8MOOKRCCvrEwF6NbOfsx772vdravWtDPcURJYWrsyxQOFKls9672vzEIqjhf-rP_4KHjx4f2HZdu9_k_01fwONt_g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2119333457</pqid></control><display><type>article</type><title>Propagation of Chaos and Poisson Hypothesis</title><source>SpringerLink Journals - AutoHoldings</source><creator>Vladimirov, A. A. ; Pirogov, S. A. ; Rybko, A. N. ; Shlosman, S. B.</creator><creatorcontrib>Vladimirov, A. A. ; Pirogov, S. A. ; Rybko, A. N. ; Shlosman, S. B.</creatorcontrib><description>We establish the strong Poisson hypothesis for symmetric closed networks. In particular, we prove asymptotic independence of nodes as the size of the system tends to infinity.</description><identifier>ISSN: 0032-9460</identifier><identifier>EISSN: 1608-3253</identifier><identifier>DOI: 10.1134/S0032946018030080</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Communication Network Theory ; Communications Engineering ; Control ; Electrical Engineering ; Engineering ; Hypotheses ; Information Storage and Retrieval ; Mathematics ; Networks ; Probability ; Systems Theory</subject><ispartof>Problems of information transmission, 2018-07, Vol.54 (3), p.290-299</ispartof><rights>Pleiades Publishing, Inc. 2018</rights><rights>Copyright Springer Science &amp; Business Media 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-1954cb690110b3e23398721334bcf28bb2bf21027c0922dbd9af3d003d807fca3</citedby><cites>FETCH-LOGICAL-c393t-1954cb690110b3e23398721334bcf28bb2bf21027c0922dbd9af3d003d807fca3</cites><orcidid>0000-0003-4909-934X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0032946018030080$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0032946018030080$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02068983$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Vladimirov, A. A.</creatorcontrib><creatorcontrib>Pirogov, S. A.</creatorcontrib><creatorcontrib>Rybko, A. N.</creatorcontrib><creatorcontrib>Shlosman, S. B.</creatorcontrib><title>Propagation of Chaos and Poisson Hypothesis</title><title>Problems of information transmission</title><addtitle>Probl Inf Transm</addtitle><description>We establish the strong Poisson hypothesis for symmetric closed networks. In particular, we prove asymptotic independence of nodes as the size of the system tends to infinity.</description><subject>Communication Network Theory</subject><subject>Communications Engineering</subject><subject>Control</subject><subject>Electrical Engineering</subject><subject>Engineering</subject><subject>Hypotheses</subject><subject>Information Storage and Retrieval</subject><subject>Mathematics</subject><subject>Networks</subject><subject>Probability</subject><subject>Systems Theory</subject><issn>0032-9460</issn><issn>1608-3253</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE9Lw0AQxRdRsFY_gLeAJ5HozE6a7B5LUSsELKjnZfNn25Sajbup0G_vhogexNPAvN978xjGLhFuESm5ewEgLpMUUAABCDhiE0xBxMRndMwmgxwP-ik7834LgAAJTdjNytlOr3Xf2DayJlpstPWRbqtoZRvvw3J56Gy_qX3jz9mJ0TtfX3zPKXt7uH9dLOP8-fFpMc_jkiT1McpZUhapBEQoqOZEUmQciZKiNFwUBS8MR-BZCZLzqqikNlSFgpWAzJSapux6zN3onepc867dQVndqOU8V8MOOKRCCvrEwF6NbOfsx772vdravWtDPcURJYWrsyxQOFKls9672vzEIqjhf-rP_4KHjx4f2HZdu9_k_01fwONt_g</recordid><startdate>20180701</startdate><enddate>20180701</enddate><creator>Vladimirov, A. A.</creator><creator>Pirogov, S. A.</creator><creator>Rybko, A. N.</creator><creator>Shlosman, S. B.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><general>MAIK Nauka/Interperiodica</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-4909-934X</orcidid></search><sort><creationdate>20180701</creationdate><title>Propagation of Chaos and Poisson Hypothesis</title><author>Vladimirov, A. A. ; Pirogov, S. A. ; Rybko, A. N. ; Shlosman, S. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-1954cb690110b3e23398721334bcf28bb2bf21027c0922dbd9af3d003d807fca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Communication Network Theory</topic><topic>Communications Engineering</topic><topic>Control</topic><topic>Electrical Engineering</topic><topic>Engineering</topic><topic>Hypotheses</topic><topic>Information Storage and Retrieval</topic><topic>Mathematics</topic><topic>Networks</topic><topic>Probability</topic><topic>Systems Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vladimirov, A. A.</creatorcontrib><creatorcontrib>Pirogov, S. A.</creatorcontrib><creatorcontrib>Rybko, A. N.</creatorcontrib><creatorcontrib>Shlosman, S. B.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Problems of information transmission</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vladimirov, A. A.</au><au>Pirogov, S. A.</au><au>Rybko, A. N.</au><au>Shlosman, S. B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Propagation of Chaos and Poisson Hypothesis</atitle><jtitle>Problems of information transmission</jtitle><stitle>Probl Inf Transm</stitle><date>2018-07-01</date><risdate>2018</risdate><volume>54</volume><issue>3</issue><spage>290</spage><epage>299</epage><pages>290-299</pages><issn>0032-9460</issn><eissn>1608-3253</eissn><abstract>We establish the strong Poisson hypothesis for symmetric closed networks. In particular, we prove asymptotic independence of nodes as the size of the system tends to infinity.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0032946018030080</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4909-934X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0032-9460
ispartof Problems of information transmission, 2018-07, Vol.54 (3), p.290-299
issn 0032-9460
1608-3253
language eng
recordid cdi_hal_primary_oai_HAL_hal_02068983v1
source SpringerLink Journals - AutoHoldings
subjects Communication Network Theory
Communications Engineering
Control
Electrical Engineering
Engineering
Hypotheses
Information Storage and Retrieval
Mathematics
Networks
Probability
Systems Theory
title Propagation of Chaos and Poisson Hypothesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T07%3A57%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Propagation%20of%20Chaos%20and%20Poisson%20Hypothesis&rft.jtitle=Problems%20of%20information%20transmission&rft.au=Vladimirov,%20A.%20A.&rft.date=2018-07-01&rft.volume=54&rft.issue=3&rft.spage=290&rft.epage=299&rft.pages=290-299&rft.issn=0032-9460&rft.eissn=1608-3253&rft_id=info:doi/10.1134/S0032946018030080&rft_dat=%3Cproquest_hal_p%3E2119333457%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2119333457&rft_id=info:pmid/&rfr_iscdi=true