Consistent equations for open-channel flows in the smooth turbulent regime with shearing effects

Consistent equations for turbulent open-channel flows on a smooth bottom are derived using a turbulence model of mixing length and an asymptotic expansion in two layers. A shallow-water scaling is used in an upper – or external – layer and a viscous scaling is used in a thin viscous – or internal –...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2017-11, Vol.831, p.289-329
Hauptverfasser: Richard, G. L., Rambaud, A., Vila, J. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 329
container_issue
container_start_page 289
container_title Journal of fluid mechanics
container_volume 831
creator Richard, G. L.
Rambaud, A.
Vila, J. P.
description Consistent equations for turbulent open-channel flows on a smooth bottom are derived using a turbulence model of mixing length and an asymptotic expansion in two layers. A shallow-water scaling is used in an upper – or external – layer and a viscous scaling is used in a thin viscous – or internal – layer close to the bottom wall. A matching procedure is used to connect both expansions in an overlap domain. Depth-averaged equations are then obtained in the approximation of weakly sheared flows which is rigorously justified. We show that the Saint-Venant equations with a negligible deviation from a flat velocity profile and with a friction law are a consistent set of equations at a certain level of approximation. The obtained friction law is of the Kármán–Prandtl type and successfully compared to relevant experiments of the literature. At a higher precision level, a consistent three-equation model is obtained with the mathematical structure of the Euler equations of compressible fluids with relaxation source terms. This new set of equations includes shearing effects and adds corrective terms to the Saint-Venant model. At this level of approximation, energy and momentum resistances are clearly distinguished. Several applications of this new model that pertains to the hydraulics of open-channel flows are presented including the computation of backwater curves and the numerical resolution of the growing and breaking of roll waves.
doi_str_mv 10.1017/jfm.2017.626
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02068251v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2017_626</cupid><sourcerecordid>1973762620</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-e061ab849d74b68db979c9d7e54b97099f644f8d5d1b9cfcf21e9b778a46510b3</originalsourceid><addsrcrecordid>eNptkM1KxDAUhYMoOP7sfICCK8GOSdomzVIG_2DAja5D0t5MM7TNmKSKbzPP4pOZYURcuLr3Hr5zuByELgieE0z4zdoMc5qWOaPsAM1IyUTOWVkdohnGlOaEUHyMTkJYY0wKLPgM6YUbgw0RxpjB26SiTXdmnM_cBsa86dQ4Qp-Z3n2EzI5f29hBFgbnYpfFyeup3zk9rOwA2YdNauhAeTuuvrZgDDQxnKEjo_oA5z_zFL3e370sHvPl88PT4naZN0XBYg6YEaXrUrS81KxuteCiSQdUZVqxEIaVpanbqiVaNKYxlIDQnNeqZBXBujhFV_vcTvVy4-2g_Kd0ysrH26XcaZhiVtOKvJPEXu7ZjXdvE4Qo127yY3pPEsELngqkOFHXe6rxLgQP5jeWYLlrXKbG5a5xmQwJn__gatDetiv4k_qf4Rs_jYVS</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1973762620</pqid></control><display><type>article</type><title>Consistent equations for open-channel flows in the smooth turbulent regime with shearing effects</title><source>Cambridge Journals</source><creator>Richard, G. L. ; Rambaud, A. ; Vila, J. P.</creator><creatorcontrib>Richard, G. L. ; Rambaud, A. ; Vila, J. P.</creatorcontrib><description>Consistent equations for turbulent open-channel flows on a smooth bottom are derived using a turbulence model of mixing length and an asymptotic expansion in two layers. A shallow-water scaling is used in an upper – or external – layer and a viscous scaling is used in a thin viscous – or internal – layer close to the bottom wall. A matching procedure is used to connect both expansions in an overlap domain. Depth-averaged equations are then obtained in the approximation of weakly sheared flows which is rigorously justified. We show that the Saint-Venant equations with a negligible deviation from a flat velocity profile and with a friction law are a consistent set of equations at a certain level of approximation. The obtained friction law is of the Kármán–Prandtl type and successfully compared to relevant experiments of the literature. At a higher precision level, a consistent three-equation model is obtained with the mathematical structure of the Euler equations of compressible fluids with relaxation source terms. This new set of equations includes shearing effects and adds corrective terms to the Saint-Venant model. At this level of approximation, energy and momentum resistances are clearly distinguished. Several applications of this new model that pertains to the hydraulics of open-channel flows are presented including the computation of backwater curves and the numerical resolution of the growing and breaking of roll waves.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2017.626</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Approximation ; Asymptotic series ; Backwater curve ; Backwaters ; Channel flow ; Compressibility ; Compressible fluids ; Computation ; Computational fluid dynamics ; Engineering Sciences ; Environmental Sciences ; Euler-Lagrange equation ; Fluid flow ; Fluids ; Friction ; Hydraulics ; Mathematical analysis ; Mathematical models ; Mixing length ; Momentum ; Open channel flow ; Reynolds number ; Scaling ; Shallow water ; Shearing ; Turbulence ; Velocity ; Water waves</subject><ispartof>Journal of fluid mechanics, 2017-11, Vol.831, p.289-329</ispartof><rights>2017 Cambridge University Press</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-e061ab849d74b68db979c9d7e54b97099f644f8d5d1b9cfcf21e9b778a46510b3</citedby><cites>FETCH-LOGICAL-c336t-e061ab849d74b68db979c9d7e54b97099f644f8d5d1b9cfcf21e9b778a46510b3</cites><orcidid>0000-0001-8572-7468</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112017006267/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,230,314,780,784,885,27924,27925,55628</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02068251$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Richard, G. L.</creatorcontrib><creatorcontrib>Rambaud, A.</creatorcontrib><creatorcontrib>Vila, J. P.</creatorcontrib><title>Consistent equations for open-channel flows in the smooth turbulent regime with shearing effects</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>Consistent equations for turbulent open-channel flows on a smooth bottom are derived using a turbulence model of mixing length and an asymptotic expansion in two layers. A shallow-water scaling is used in an upper – or external – layer and a viscous scaling is used in a thin viscous – or internal – layer close to the bottom wall. A matching procedure is used to connect both expansions in an overlap domain. Depth-averaged equations are then obtained in the approximation of weakly sheared flows which is rigorously justified. We show that the Saint-Venant equations with a negligible deviation from a flat velocity profile and with a friction law are a consistent set of equations at a certain level of approximation. The obtained friction law is of the Kármán–Prandtl type and successfully compared to relevant experiments of the literature. At a higher precision level, a consistent three-equation model is obtained with the mathematical structure of the Euler equations of compressible fluids with relaxation source terms. This new set of equations includes shearing effects and adds corrective terms to the Saint-Venant model. At this level of approximation, energy and momentum resistances are clearly distinguished. Several applications of this new model that pertains to the hydraulics of open-channel flows are presented including the computation of backwater curves and the numerical resolution of the growing and breaking of roll waves.</description><subject>Approximation</subject><subject>Asymptotic series</subject><subject>Backwater curve</subject><subject>Backwaters</subject><subject>Channel flow</subject><subject>Compressibility</subject><subject>Compressible fluids</subject><subject>Computation</subject><subject>Computational fluid dynamics</subject><subject>Engineering Sciences</subject><subject>Environmental Sciences</subject><subject>Euler-Lagrange equation</subject><subject>Fluid flow</subject><subject>Fluids</subject><subject>Friction</subject><subject>Hydraulics</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mixing length</subject><subject>Momentum</subject><subject>Open channel flow</subject><subject>Reynolds number</subject><subject>Scaling</subject><subject>Shallow water</subject><subject>Shearing</subject><subject>Turbulence</subject><subject>Velocity</subject><subject>Water waves</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkM1KxDAUhYMoOP7sfICCK8GOSdomzVIG_2DAja5D0t5MM7TNmKSKbzPP4pOZYURcuLr3Hr5zuByELgieE0z4zdoMc5qWOaPsAM1IyUTOWVkdohnGlOaEUHyMTkJYY0wKLPgM6YUbgw0RxpjB26SiTXdmnM_cBsa86dQ4Qp-Z3n2EzI5f29hBFgbnYpfFyeup3zk9rOwA2YdNauhAeTuuvrZgDDQxnKEjo_oA5z_zFL3e370sHvPl88PT4naZN0XBYg6YEaXrUrS81KxuteCiSQdUZVqxEIaVpanbqiVaNKYxlIDQnNeqZBXBujhFV_vcTvVy4-2g_Kd0ysrH26XcaZhiVtOKvJPEXu7ZjXdvE4Qo127yY3pPEsELngqkOFHXe6rxLgQP5jeWYLlrXKbG5a5xmQwJn__gatDetiv4k_qf4Rs_jYVS</recordid><startdate>20171125</startdate><enddate>20171125</enddate><creator>Richard, G. L.</creator><creator>Rambaud, A.</creator><creator>Vila, J. P.</creator><general>Cambridge University Press</general><general>Cambridge University Press (CUP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-8572-7468</orcidid></search><sort><creationdate>20171125</creationdate><title>Consistent equations for open-channel flows in the smooth turbulent regime with shearing effects</title><author>Richard, G. L. ; Rambaud, A. ; Vila, J. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-e061ab849d74b68db979c9d7e54b97099f644f8d5d1b9cfcf21e9b778a46510b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Approximation</topic><topic>Asymptotic series</topic><topic>Backwater curve</topic><topic>Backwaters</topic><topic>Channel flow</topic><topic>Compressibility</topic><topic>Compressible fluids</topic><topic>Computation</topic><topic>Computational fluid dynamics</topic><topic>Engineering Sciences</topic><topic>Environmental Sciences</topic><topic>Euler-Lagrange equation</topic><topic>Fluid flow</topic><topic>Fluids</topic><topic>Friction</topic><topic>Hydraulics</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mixing length</topic><topic>Momentum</topic><topic>Open channel flow</topic><topic>Reynolds number</topic><topic>Scaling</topic><topic>Shallow water</topic><topic>Shearing</topic><topic>Turbulence</topic><topic>Velocity</topic><topic>Water waves</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Richard, G. L.</creatorcontrib><creatorcontrib>Rambaud, A.</creatorcontrib><creatorcontrib>Vila, J. P.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Richard, G. L.</au><au>Rambaud, A.</au><au>Vila, J. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Consistent equations for open-channel flows in the smooth turbulent regime with shearing effects</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2017-11-25</date><risdate>2017</risdate><volume>831</volume><spage>289</spage><epage>329</epage><pages>289-329</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>Consistent equations for turbulent open-channel flows on a smooth bottom are derived using a turbulence model of mixing length and an asymptotic expansion in two layers. A shallow-water scaling is used in an upper – or external – layer and a viscous scaling is used in a thin viscous – or internal – layer close to the bottom wall. A matching procedure is used to connect both expansions in an overlap domain. Depth-averaged equations are then obtained in the approximation of weakly sheared flows which is rigorously justified. We show that the Saint-Venant equations with a negligible deviation from a flat velocity profile and with a friction law are a consistent set of equations at a certain level of approximation. The obtained friction law is of the Kármán–Prandtl type and successfully compared to relevant experiments of the literature. At a higher precision level, a consistent three-equation model is obtained with the mathematical structure of the Euler equations of compressible fluids with relaxation source terms. This new set of equations includes shearing effects and adds corrective terms to the Saint-Venant model. At this level of approximation, energy and momentum resistances are clearly distinguished. Several applications of this new model that pertains to the hydraulics of open-channel flows are presented including the computation of backwater curves and the numerical resolution of the growing and breaking of roll waves.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2017.626</doi><tpages>41</tpages><orcidid>https://orcid.org/0000-0001-8572-7468</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2017-11, Vol.831, p.289-329
issn 0022-1120
1469-7645
language eng
recordid cdi_hal_primary_oai_HAL_hal_02068251v1
source Cambridge Journals
subjects Approximation
Asymptotic series
Backwater curve
Backwaters
Channel flow
Compressibility
Compressible fluids
Computation
Computational fluid dynamics
Engineering Sciences
Environmental Sciences
Euler-Lagrange equation
Fluid flow
Fluids
Friction
Hydraulics
Mathematical analysis
Mathematical models
Mixing length
Momentum
Open channel flow
Reynolds number
Scaling
Shallow water
Shearing
Turbulence
Velocity
Water waves
title Consistent equations for open-channel flows in the smooth turbulent regime with shearing effects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A43%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Consistent%20equations%20for%20open-channel%20flows%20in%C2%A0the%20smooth%20turbulent%20regime%20with%20shearing%C2%A0effects&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Richard,%20G.%20L.&rft.date=2017-11-25&rft.volume=831&rft.spage=289&rft.epage=329&rft.pages=289-329&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2017.626&rft_dat=%3Cproquest_hal_p%3E1973762620%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1973762620&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2017_626&rfr_iscdi=true