On the length of fully commutative elements
In a Coxeter group W, an element is fully commutative if any two of its reduced expressions can be linked by a series of commutations of adjacent letters. These elements have particularly nice combinatorial properties, and index a basis of the generalized Temperley-Lieb algebra attached to W. We giv...
Gespeichert in:
Veröffentlicht in: | Transactions of the American Mathematical Society 2018-08, Vol.370 (8), p.5705-5724 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5724 |
---|---|
container_issue | 8 |
container_start_page | 5705 |
container_title | Transactions of the American Mathematical Society |
container_volume | 370 |
creator | NADEAU, PHILIPPE |
description | In a Coxeter group W, an element is fully commutative if any two of its reduced expressions can be linked by a series of commutations of adjacent letters. These elements have particularly nice combinatorial properties, and index a basis of the generalized Temperley-Lieb algebra attached to W. We give two results about the sequence counting these elements with respect to their Coxeter length. First we prove that this sequence always satisfies a linear recurrence with constant coefficients, by showing that reduced expressions of fully commutative elements form a regular language. Then we classify those groups W for which the sequence is ultimately periodic, extending a result of Stembridge. These results are applied to the growth of generalized Temperley-Lieb algebras. |
doi_str_mv | 10.1090/tran/7183 |
format | Article |
fullrecord | <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02064835v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>90022282</jstor_id><sourcerecordid>90022282</sourcerecordid><originalsourceid>FETCH-LOGICAL-a349t-3f256f5956d58a2b939643c005b6353913ddb731e0ad400d220a31292fe6ef103</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRMFYP_gAhBy8isbOf2T2WUq0Q6EXPyybZNSn5kOy20H9vQqTePA0z7zPv4UHoHsMLBgXLMJhumWJJL1CEQcpESA6XKAIAkijF0mt04_1-XIFJEaHnXReHysaN7b5CFfcudoemOcVF37aHYEJ9tLFtbGu74G_RlTONt3e_c4E-Xzcf622S7d7e16ssMZSpkFBHuHBccVFyaUiuqBKMFgA8F5RThWlZ5inFFkzJAEpCwFBMFHFWWIeBLtDT3FuZRn8PdWuGk-5NrberTE83ICCYpPyI_9hi6L0frDs_YNCTET0Z0ZORkX2Y2b0P_XAG1aiGEEnG_HHOTev_qfkB4zxm0A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the length of fully commutative elements</title><source>American Mathematical Society Publications (Freely Accessible)</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>JSTOR Mathematics & Statistics</source><source>Jstor Complete Legacy</source><source>American Mathematical Society Publications</source><creator>NADEAU, PHILIPPE</creator><creatorcontrib>NADEAU, PHILIPPE</creatorcontrib><description>In a Coxeter group W, an element is fully commutative if any two of its reduced expressions can be linked by a series of commutations of adjacent letters. These elements have particularly nice combinatorial properties, and index a basis of the generalized Temperley-Lieb algebra attached to W. We give two results about the sequence counting these elements with respect to their Coxeter length. First we prove that this sequence always satisfies a linear recurrence with constant coefficients, by showing that reduced expressions of fully commutative elements form a regular language. Then we classify those groups W for which the sequence is ultimately periodic, extending a result of Stembridge. These results are applied to the growth of generalized Temperley-Lieb algebras.</description><identifier>ISSN: 0002-9947</identifier><identifier>EISSN: 1088-6850</identifier><identifier>DOI: 10.1090/tran/7183</identifier><language>eng</language><publisher>American Mathematical Society</publisher><subject>Combinatorics ; Mathematics</subject><ispartof>Transactions of the American Mathematical Society, 2018-08, Vol.370 (8), p.5705-5724</ispartof><rights>Copyright 2018, American Mathematical Society</rights><rights>2018 American Mathematical Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a349t-3f256f5956d58a2b939643c005b6353913ddb731e0ad400d220a31292fe6ef103</citedby><cites>FETCH-LOGICAL-a349t-3f256f5956d58a2b939643c005b6353913ddb731e0ad400d220a31292fe6ef103</cites><orcidid>0000-0002-7230-755X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttp://www.ams.org/tran/2018-370-08/S0002-9947-2018-07183-5/S0002-9947-2018-07183-5.pdf$$EPDF$$P50$$Gams$$H</linktopdf><linktohtml>$$Uhttp://www.ams.org/tran/2018-370-08/S0002-9947-2018-07183-5/$$EHTML$$P50$$Gams$$H</linktohtml><link.rule.ids>68,69,230,314,778,782,801,830,883,23307,23311,27907,27908,58000,58004,58233,58237,77587,77589,77597,77599</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02064835$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>NADEAU, PHILIPPE</creatorcontrib><title>On the length of fully commutative elements</title><title>Transactions of the American Mathematical Society</title><description>In a Coxeter group W, an element is fully commutative if any two of its reduced expressions can be linked by a series of commutations of adjacent letters. These elements have particularly nice combinatorial properties, and index a basis of the generalized Temperley-Lieb algebra attached to W. We give two results about the sequence counting these elements with respect to their Coxeter length. First we prove that this sequence always satisfies a linear recurrence with constant coefficients, by showing that reduced expressions of fully commutative elements form a regular language. Then we classify those groups W for which the sequence is ultimately periodic, extending a result of Stembridge. These results are applied to the growth of generalized Temperley-Lieb algebras.</description><subject>Combinatorics</subject><subject>Mathematics</subject><issn>0002-9947</issn><issn>1088-6850</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRMFYP_gAhBy8isbOf2T2WUq0Q6EXPyybZNSn5kOy20H9vQqTePA0z7zPv4UHoHsMLBgXLMJhumWJJL1CEQcpESA6XKAIAkijF0mt04_1-XIFJEaHnXReHysaN7b5CFfcudoemOcVF37aHYEJ9tLFtbGu74G_RlTONt3e_c4E-Xzcf622S7d7e16ssMZSpkFBHuHBccVFyaUiuqBKMFgA8F5RThWlZ5inFFkzJAEpCwFBMFHFWWIeBLtDT3FuZRn8PdWuGk-5NrberTE83ICCYpPyI_9hi6L0frDs_YNCTET0Z0ZORkX2Y2b0P_XAG1aiGEEnG_HHOTev_qfkB4zxm0A</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>NADEAU, PHILIPPE</creator><general>American Mathematical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-7230-755X</orcidid></search><sort><creationdate>20180801</creationdate><title>On the length of fully commutative elements</title><author>NADEAU, PHILIPPE</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a349t-3f256f5956d58a2b939643c005b6353913ddb731e0ad400d220a31292fe6ef103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Combinatorics</topic><topic>Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>NADEAU, PHILIPPE</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Transactions of the American Mathematical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>NADEAU, PHILIPPE</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the length of fully commutative elements</atitle><jtitle>Transactions of the American Mathematical Society</jtitle><date>2018-08-01</date><risdate>2018</risdate><volume>370</volume><issue>8</issue><spage>5705</spage><epage>5724</epage><pages>5705-5724</pages><issn>0002-9947</issn><eissn>1088-6850</eissn><abstract>In a Coxeter group W, an element is fully commutative if any two of its reduced expressions can be linked by a series of commutations of adjacent letters. These elements have particularly nice combinatorial properties, and index a basis of the generalized Temperley-Lieb algebra attached to W. We give two results about the sequence counting these elements with respect to their Coxeter length. First we prove that this sequence always satisfies a linear recurrence with constant coefficients, by showing that reduced expressions of fully commutative elements form a regular language. Then we classify those groups W for which the sequence is ultimately periodic, extending a result of Stembridge. These results are applied to the growth of generalized Temperley-Lieb algebras.</abstract><pub>American Mathematical Society</pub><doi>10.1090/tran/7183</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-7230-755X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9947 |
ispartof | Transactions of the American Mathematical Society, 2018-08, Vol.370 (8), p.5705-5724 |
issn | 0002-9947 1088-6850 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02064835v1 |
source | American Mathematical Society Publications (Freely Accessible); Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; JSTOR Mathematics & Statistics; Jstor Complete Legacy; American Mathematical Society Publications |
subjects | Combinatorics Mathematics |
title | On the length of fully commutative elements |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T12%3A04%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20length%20of%20fully%20commutative%20elements&rft.jtitle=Transactions%20of%20the%20American%20Mathematical%20Society&rft.au=NADEAU,%20PHILIPPE&rft.date=2018-08-01&rft.volume=370&rft.issue=8&rft.spage=5705&rft.epage=5724&rft.pages=5705-5724&rft.issn=0002-9947&rft.eissn=1088-6850&rft_id=info:doi/10.1090/tran/7183&rft_dat=%3Cjstor_hal_p%3E90022282%3C/jstor_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=90022282&rfr_iscdi=true |