pavo 2: New tools for the spectral and spatial analysis of colour in r

Biological coloration presents a canvas for the study of ecological and evolutionary processes. Enduring interest in colour‐based phenotypes has driven, and been driven by, improved techniques for quantifying colour patterns in ever‐more relevant ways, yet the need for flexible, open frameworks for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Methods in ecology and evolution 2019-07, Vol.10 (7), p.1097-1107
Hauptverfasser: Maia, Rafael, Gruson, Hugo, Endler, John A., White, Thomas E., O’Hara, Robert B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1107
container_issue 7
container_start_page 1097
container_title Methods in ecology and evolution
container_volume 10
creator Maia, Rafael
Gruson, Hugo
Endler, John A.
White, Thomas E.
O’Hara, Robert B.
description Biological coloration presents a canvas for the study of ecological and evolutionary processes. Enduring interest in colour‐based phenotypes has driven, and been driven by, improved techniques for quantifying colour patterns in ever‐more relevant ways, yet the need for flexible, open frameworks for data processing and analysis persists. Here we introduce pavo 2, the latest iteration of the r package pavo. This release represents the extensive refinement and expansion of existing methods, as well as a suite of new tools for the cohesive analysis of the spectral and (now) spatial structure of colour patterns and perception. At its core, the package retains a broad focus on (a) the organization and processing of spectral and spatial data, and tools for the alternating (b) visualization, and (c) analysis of data. Significantly, pavo 2 introduces image‐analysis capabilities, providing a cohesive workflow for the comprehensive analysis of colour patterns. We demonstrate the utility of pavo with a brief example centred on mimicry in Heliconius butterflies. Drawing on visual modelling, adjacency, and boundary strength analyses, we show that the combined spectral (colour and luminance) and spatial (pattern element distribution and boundary salience) features of putative models and mimics are closely aligned. pavo 2 offers a flexible and reproducible environment for the analysis of colour, with renewed potential to assist researchers in answering fundamental questions in sensory ecology and evolution.
doi_str_mv 10.1111/2041-210X.13174
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02063659v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2249672025</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3964-e15bf3d0cbeacb02a274e52a722a7534ee7d4b0b565f521f464240e819a2f73</originalsourceid><addsrcrecordid>eNqFkE1rAjEQhkNpoWI99xroqYfVZPKxbm8iWgu2PbSH3kJ2TXBla7bJqvjvzbpFeuvAMB887zC8CN1TMqQxRkA4TYCSryFlNOVXqHfZXP_pb9EghA2JwcYZAd5D81rvHYYn_GYOuHGuCtg6j5u1waE2ReN1hfV2FQfdlOdeV8dQBuwsLlzldh6XW-zv0I3VVTCD39pHH_PZ53SRLN-fX6aTZVKwTPLEUJFbtiJFbnSRE9CQciNApxBTMG5MuuI5yYUUVgC1XHLgxIxppsGmrI8eu6trXanal9_aH5XTpVpMlqrdESCSSZHtaWQfOrb27mdnQqM28dn4fVAAPJMpEBCRGnVU4V0I3tjLWUpU66xqvVOtd-rsbFTITnEoK3P8D1evsxnrhCd843fS</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2249672025</pqid></control><display><type>article</type><title>pavo 2: New tools for the spectral and spatial analysis of colour in r</title><source>Access via Wiley Online Library</source><source>Alma/SFX Local Collection</source><creator>Maia, Rafael ; Gruson, Hugo ; Endler, John A. ; White, Thomas E. ; O’Hara, Robert B.</creator><contributor>O’Hara, Robert B.</contributor><creatorcontrib>Maia, Rafael ; Gruson, Hugo ; Endler, John A. ; White, Thomas E. ; O’Hara, Robert B. ; O’Hara, Robert B.</creatorcontrib><description>Biological coloration presents a canvas for the study of ecological and evolutionary processes. Enduring interest in colour‐based phenotypes has driven, and been driven by, improved techniques for quantifying colour patterns in ever‐more relevant ways, yet the need for flexible, open frameworks for data processing and analysis persists. Here we introduce pavo 2, the latest iteration of the r package pavo. This release represents the extensive refinement and expansion of existing methods, as well as a suite of new tools for the cohesive analysis of the spectral and (now) spatial structure of colour patterns and perception. At its core, the package retains a broad focus on (a) the organization and processing of spectral and spatial data, and tools for the alternating (b) visualization, and (c) analysis of data. Significantly, pavo 2 introduces image‐analysis capabilities, providing a cohesive workflow for the comprehensive analysis of colour patterns. We demonstrate the utility of pavo with a brief example centred on mimicry in Heliconius butterflies. Drawing on visual modelling, adjacency, and boundary strength analyses, we show that the combined spectral (colour and luminance) and spatial (pattern element distribution and boundary salience) features of putative models and mimics are closely aligned. pavo 2 offers a flexible and reproducible environment for the analysis of colour, with renewed potential to assist researchers in answering fundamental questions in sensory ecology and evolution.</description><identifier>ISSN: 2041-210X</identifier><identifier>EISSN: 2041-210X</identifier><identifier>DOI: 10.1111/2041-210X.13174</identifier><language>eng</language><publisher>London: John Wiley &amp; Sons, Inc</publisher><subject>Biodiversity ; Biodiversity and Ecology ; Biological evolution ; Boundary element method ; Butterflies &amp; moths ; Color ; color, perception, animals, workflow ; Coloration ; colour ; colourspace ; Data analysis ; Data processing ; Ecological monitoring ; Ecology, environment ; Environmental Sciences ; Image processing ; Information processing ; Iterative methods ; Life Sciences ; Luminance distribution ; Mimicry ; Phenotypes ; photography ; Populations and Evolution ; reflectance ; sensory ecology ; Spatial analysis ; Spatial data ; Spectra ; spectrometry ; Symbiosis ; vision ; Workflow</subject><ispartof>Methods in ecology and evolution, 2019-07, Vol.10 (7), p.1097-1107</ispartof><rights>2019 The Authors. Methods in Ecology and Evolution © 2019 British Ecological Society</rights><rights>Methods in Ecology and Evolution © 2019 British Ecological Society</rights><rights>Copyright</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3964-e15bf3d0cbeacb02a274e52a722a7534ee7d4b0b565f521f464240e819a2f73</citedby><cites>FETCH-LOGICAL-c3964-e15bf3d0cbeacb02a274e52a722a7534ee7d4b0b565f521f464240e819a2f73</cites><orcidid>0000-0002-7563-9795 ; 0000-0002-4094-1476 ; 0000-0002-7557-7627 ; 0000-0002-3976-1734 ; 0000-0002-0536-6162</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F2041-210X.13174$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F2041-210X.13174$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02063659$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>O’Hara, Robert B.</contributor><creatorcontrib>Maia, Rafael</creatorcontrib><creatorcontrib>Gruson, Hugo</creatorcontrib><creatorcontrib>Endler, John A.</creatorcontrib><creatorcontrib>White, Thomas E.</creatorcontrib><creatorcontrib>O’Hara, Robert B.</creatorcontrib><title>pavo 2: New tools for the spectral and spatial analysis of colour in r</title><title>Methods in ecology and evolution</title><description>Biological coloration presents a canvas for the study of ecological and evolutionary processes. Enduring interest in colour‐based phenotypes has driven, and been driven by, improved techniques for quantifying colour patterns in ever‐more relevant ways, yet the need for flexible, open frameworks for data processing and analysis persists. Here we introduce pavo 2, the latest iteration of the r package pavo. This release represents the extensive refinement and expansion of existing methods, as well as a suite of new tools for the cohesive analysis of the spectral and (now) spatial structure of colour patterns and perception. At its core, the package retains a broad focus on (a) the organization and processing of spectral and spatial data, and tools for the alternating (b) visualization, and (c) analysis of data. Significantly, pavo 2 introduces image‐analysis capabilities, providing a cohesive workflow for the comprehensive analysis of colour patterns. We demonstrate the utility of pavo with a brief example centred on mimicry in Heliconius butterflies. Drawing on visual modelling, adjacency, and boundary strength analyses, we show that the combined spectral (colour and luminance) and spatial (pattern element distribution and boundary salience) features of putative models and mimics are closely aligned. pavo 2 offers a flexible and reproducible environment for the analysis of colour, with renewed potential to assist researchers in answering fundamental questions in sensory ecology and evolution.</description><subject>Biodiversity</subject><subject>Biodiversity and Ecology</subject><subject>Biological evolution</subject><subject>Boundary element method</subject><subject>Butterflies &amp; moths</subject><subject>Color</subject><subject>color, perception, animals, workflow</subject><subject>Coloration</subject><subject>colour</subject><subject>colourspace</subject><subject>Data analysis</subject><subject>Data processing</subject><subject>Ecological monitoring</subject><subject>Ecology, environment</subject><subject>Environmental Sciences</subject><subject>Image processing</subject><subject>Information processing</subject><subject>Iterative methods</subject><subject>Life Sciences</subject><subject>Luminance distribution</subject><subject>Mimicry</subject><subject>Phenotypes</subject><subject>photography</subject><subject>Populations and Evolution</subject><subject>reflectance</subject><subject>sensory ecology</subject><subject>Spatial analysis</subject><subject>Spatial data</subject><subject>Spectra</subject><subject>spectrometry</subject><subject>Symbiosis</subject><subject>vision</subject><subject>Workflow</subject><issn>2041-210X</issn><issn>2041-210X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqFkE1rAjEQhkNpoWI99xroqYfVZPKxbm8iWgu2PbSH3kJ2TXBla7bJqvjvzbpFeuvAMB887zC8CN1TMqQxRkA4TYCSryFlNOVXqHfZXP_pb9EghA2JwcYZAd5D81rvHYYn_GYOuHGuCtg6j5u1waE2ReN1hfV2FQfdlOdeV8dQBuwsLlzldh6XW-zv0I3VVTCD39pHH_PZ53SRLN-fX6aTZVKwTPLEUJFbtiJFbnSRE9CQciNApxBTMG5MuuI5yYUUVgC1XHLgxIxppsGmrI8eu6trXanal9_aH5XTpVpMlqrdESCSSZHtaWQfOrb27mdnQqM28dn4fVAAPJMpEBCRGnVU4V0I3tjLWUpU66xqvVOtd-rsbFTITnEoK3P8D1evsxnrhCd843fS</recordid><startdate>201907</startdate><enddate>201907</enddate><creator>Maia, Rafael</creator><creator>Gruson, Hugo</creator><creator>Endler, John A.</creator><creator>White, Thomas E.</creator><creator>O’Hara, Robert B.</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-7563-9795</orcidid><orcidid>https://orcid.org/0000-0002-4094-1476</orcidid><orcidid>https://orcid.org/0000-0002-7557-7627</orcidid><orcidid>https://orcid.org/0000-0002-3976-1734</orcidid><orcidid>https://orcid.org/0000-0002-0536-6162</orcidid></search><sort><creationdate>201907</creationdate><title>pavo 2: New tools for the spectral and spatial analysis of colour in r</title><author>Maia, Rafael ; Gruson, Hugo ; Endler, John A. ; White, Thomas E. ; O’Hara, Robert B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3964-e15bf3d0cbeacb02a274e52a722a7534ee7d4b0b565f521f464240e819a2f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biodiversity</topic><topic>Biodiversity and Ecology</topic><topic>Biological evolution</topic><topic>Boundary element method</topic><topic>Butterflies &amp; moths</topic><topic>Color</topic><topic>color, perception, animals, workflow</topic><topic>Coloration</topic><topic>colour</topic><topic>colourspace</topic><topic>Data analysis</topic><topic>Data processing</topic><topic>Ecological monitoring</topic><topic>Ecology, environment</topic><topic>Environmental Sciences</topic><topic>Image processing</topic><topic>Information processing</topic><topic>Iterative methods</topic><topic>Life Sciences</topic><topic>Luminance distribution</topic><topic>Mimicry</topic><topic>Phenotypes</topic><topic>photography</topic><topic>Populations and Evolution</topic><topic>reflectance</topic><topic>sensory ecology</topic><topic>Spatial analysis</topic><topic>Spatial data</topic><topic>Spectra</topic><topic>spectrometry</topic><topic>Symbiosis</topic><topic>vision</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maia, Rafael</creatorcontrib><creatorcontrib>Gruson, Hugo</creatorcontrib><creatorcontrib>Endler, John A.</creatorcontrib><creatorcontrib>White, Thomas E.</creatorcontrib><creatorcontrib>O’Hara, Robert B.</creatorcontrib><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Methods in ecology and evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maia, Rafael</au><au>Gruson, Hugo</au><au>Endler, John A.</au><au>White, Thomas E.</au><au>O’Hara, Robert B.</au><au>O’Hara, Robert B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>pavo 2: New tools for the spectral and spatial analysis of colour in r</atitle><jtitle>Methods in ecology and evolution</jtitle><date>2019-07</date><risdate>2019</risdate><volume>10</volume><issue>7</issue><spage>1097</spage><epage>1107</epage><pages>1097-1107</pages><issn>2041-210X</issn><eissn>2041-210X</eissn><abstract>Biological coloration presents a canvas for the study of ecological and evolutionary processes. Enduring interest in colour‐based phenotypes has driven, and been driven by, improved techniques for quantifying colour patterns in ever‐more relevant ways, yet the need for flexible, open frameworks for data processing and analysis persists. Here we introduce pavo 2, the latest iteration of the r package pavo. This release represents the extensive refinement and expansion of existing methods, as well as a suite of new tools for the cohesive analysis of the spectral and (now) spatial structure of colour patterns and perception. At its core, the package retains a broad focus on (a) the organization and processing of spectral and spatial data, and tools for the alternating (b) visualization, and (c) analysis of data. Significantly, pavo 2 introduces image‐analysis capabilities, providing a cohesive workflow for the comprehensive analysis of colour patterns. We demonstrate the utility of pavo with a brief example centred on mimicry in Heliconius butterflies. Drawing on visual modelling, adjacency, and boundary strength analyses, we show that the combined spectral (colour and luminance) and spatial (pattern element distribution and boundary salience) features of putative models and mimics are closely aligned. pavo 2 offers a flexible and reproducible environment for the analysis of colour, with renewed potential to assist researchers in answering fundamental questions in sensory ecology and evolution.</abstract><cop>London</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1111/2041-210X.13174</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-7563-9795</orcidid><orcidid>https://orcid.org/0000-0002-4094-1476</orcidid><orcidid>https://orcid.org/0000-0002-7557-7627</orcidid><orcidid>https://orcid.org/0000-0002-3976-1734</orcidid><orcidid>https://orcid.org/0000-0002-0536-6162</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2041-210X
ispartof Methods in ecology and evolution, 2019-07, Vol.10 (7), p.1097-1107
issn 2041-210X
2041-210X
language eng
recordid cdi_hal_primary_oai_HAL_hal_02063659v1
source Access via Wiley Online Library; Alma/SFX Local Collection
subjects Biodiversity
Biodiversity and Ecology
Biological evolution
Boundary element method
Butterflies & moths
Color
color, perception, animals, workflow
Coloration
colour
colourspace
Data analysis
Data processing
Ecological monitoring
Ecology, environment
Environmental Sciences
Image processing
Information processing
Iterative methods
Life Sciences
Luminance distribution
Mimicry
Phenotypes
photography
Populations and Evolution
reflectance
sensory ecology
Spatial analysis
Spatial data
Spectra
spectrometry
Symbiosis
vision
Workflow
title pavo 2: New tools for the spectral and spatial analysis of colour in r
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T19%3A19%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=pavo%202:%20New%20tools%20for%20the%20spectral%20and%20spatial%20analysis%20of%20colour%20in%20r&rft.jtitle=Methods%20in%20ecology%20and%20evolution&rft.au=Maia,%20Rafael&rft.date=2019-07&rft.volume=10&rft.issue=7&rft.spage=1097&rft.epage=1107&rft.pages=1097-1107&rft.issn=2041-210X&rft.eissn=2041-210X&rft_id=info:doi/10.1111/2041-210X.13174&rft_dat=%3Cproquest_hal_p%3E2249672025%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2249672025&rft_id=info:pmid/&rfr_iscdi=true