Collagen Gel Cell Encapsulation to Study Mechanotransduction

Mechanical forces and 3D topological environment can be used to control differentiation of mesenchymal stem cells (MSCs). However, the effects of physical and mechanical cues of the microenvironment on MSC fate determination have not yet been fully understood. This study investigates and compares th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Perrault, Cécile, Barreto, Sara, Baldit, Adrien, Campos Marin, Ana, Brunelli, Marzia, Shariatzadeh, Maryam, Castro, Andre, Lacroix, Damien
Format: Buchkapitel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 125
container_issue
container_start_page 105
container_title
container_volume 3
creator Perrault, Cécile
Barreto, Sara
Baldit, Adrien
Campos Marin, Ana
Brunelli, Marzia
Shariatzadeh, Maryam
Castro, Andre
Lacroix, Damien
description Mechanical forces and 3D topological environment can be used to control differentiation of mesenchymal stem cells (MSCs). However, the effects of physical and mechanical cues of the microenvironment on MSC fate determination have not yet been fully understood. This study investigates and compares the effect of mechanical stimulations on soft cellular microspheres when subjected to dynamic fluid compression. Microspheres were produced by gelation of bovine collagen type I with concentrations of 2 mg/ml and 1000–2000 hES-MP cells per 5 μl droplet. A loading condition of 10% dynamic loading was applied by a BOSE BioDynamic bioreactor for 15 and 40 min/day for 5 and 10 days on the cell-seeded collagen microspheres. Cell viability and proliferation, alkaline phosphatase activity and mineralization were compared with controls. Monitoring alkaline phosphatase level reported a significant increase in the enzyme activity by day 14 in loaded samples of 40 min/day loading protocol compared with other experimental conditions. Mineralization was assessed by measuring calcium, phosphorous concentrations and intensity of H&E and alizarin red S staining and showed the highest mineral accumulation in the loaded samples on day 28 post encapsulation. This study indicated that loading of very low cell number seeded on soft natural scaffold can encourage osteogenesis of cells by enhancing both early stage bone marker and mineralization. Self-assembled cell/collagen microspheres present exceptional cell delivery model in bone healing/repair process and field of regenerative medicine.
doi_str_mv 10.1007/978-981-10-8075-3_6
format Book Chapter
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02063161v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>EBC5484251_84_118</sourcerecordid><originalsourceid>FETCH-LOGICAL-h205t-687382f50440dff852f3c4414d6d5563b9476705ed69d7732d9ba6f02c3f60143</originalsourceid><addsrcrecordid>eNo9UMlOwzAQNatoS7-AS64cDDPxGokLikqLVMQBOFtu4rQFk5Q4Qerf46jAaeS3zPg9Qq4QbhBA3WZK00wjRaAalKDMyCMyjWgEEQaIHZNRillGtUjZCRn_EVyd_hMozskYgWulJBd4QaYhvANACiwTwEfkLm-8t2tXJ3Pnk9x5n8zqwu5C7223beqka5KXri_3yZMrNrZuutbWoeyLgbwkZ5X1wU1_54S8Pcxe8wVdPs8f8_sl3aQgOiq1Yjqt4j0OZVXF71as4Bx5KUshJFtlXEkFwpUyK5ViaZmtrKwgLVglATmbkOvD3o31ZtduP227N43dmsX90gxYzCMZSvzGqMWDNkRhvXatWTXNRzAIZujVxAZNbGp4DyWa2Gv0sINn1zZfvQudcYOpcHVM62PsXefaYATXPBVoNDeImv0Amr1zkw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>book_chapter</recordtype><pqid>EBC5484251_84_118</pqid></control><display><type>book_chapter</type><title>Collagen Gel Cell Encapsulation to Study Mechanotransduction</title><source>Springer Books</source><creator>Perrault, Cécile ; Barreto, Sara ; Baldit, Adrien ; Campos Marin, Ana ; Brunelli, Marzia ; Shariatzadeh, Maryam ; Castro, Andre ; Lacroix, Damien</creator><creatorcontrib>Perrault, Cécile ; Barreto, Sara ; Baldit, Adrien ; Campos Marin, Ana ; Brunelli, Marzia ; Shariatzadeh, Maryam ; Castro, Andre ; Lacroix, Damien</creatorcontrib><description>Mechanical forces and 3D topological environment can be used to control differentiation of mesenchymal stem cells (MSCs). However, the effects of physical and mechanical cues of the microenvironment on MSC fate determination have not yet been fully understood. This study investigates and compares the effect of mechanical stimulations on soft cellular microspheres when subjected to dynamic fluid compression. Microspheres were produced by gelation of bovine collagen type I with concentrations of 2 mg/ml and 1000–2000 hES-MP cells per 5 μl droplet. A loading condition of 10% dynamic loading was applied by a BOSE BioDynamic bioreactor for 15 and 40 min/day for 5 and 10 days on the cell-seeded collagen microspheres. Cell viability and proliferation, alkaline phosphatase activity and mineralization were compared with controls. Monitoring alkaline phosphatase level reported a significant increase in the enzyme activity by day 14 in loaded samples of 40 min/day loading protocol compared with other experimental conditions. Mineralization was assessed by measuring calcium, phosphorous concentrations and intensity of H&amp;E and alizarin red S staining and showed the highest mineral accumulation in the loaded samples on day 28 post encapsulation. This study indicated that loading of very low cell number seeded on soft natural scaffold can encourage osteogenesis of cells by enhancing both early stage bone marker and mineralization. Self-assembled cell/collagen microspheres present exceptional cell delivery model in bone healing/repair process and field of regenerative medicine.</description><identifier>ISSN: 2199-8515</identifier><identifier>ISBN: 9811080747</identifier><identifier>ISBN: 9789811080746</identifier><identifier>EISSN: 2199-8523</identifier><identifier>EISBN: 9789811080753</identifier><identifier>EISBN: 9811080755</identifier><identifier>DOI: 10.1007/978-981-10-8075-3_6</identifier><identifier>OCLC: 1048776451</identifier><identifier>LCCallNum: TA349-359</identifier><language>eng</language><publisher>Singapore: Springer Singapore Pte. Limited</publisher><subject>Biomechanics ; Collagen microspheres ; Dynamic loading ; Engineering Sciences ; Mechanical engineering ; Mechanical stimulation ; Mechanics ; Mechanics of materials ; Osteogenesis ; Solid mechanics ; Structural mechanics ; Tissue engineering</subject><ispartof>Multiscale Mechanobiology in Tissue Engineering, 2018, Vol.3, p.105-125</ispartof><rights>Springer Nature Singapore Pte Ltd. 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-1675-5681</orcidid><relation>Frontiers of Biomechanics</relation></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://ebookcentral.proquest.com/covers/5484251-l.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/978-981-10-8075-3_6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/978-981-10-8075-3_6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,779,780,784,793,885,27925,38255,41442,42511</link.rule.ids><backlink>$$Uhttps://hal.univ-lorraine.fr/hal-02063161$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Perrault, Cécile</creatorcontrib><creatorcontrib>Barreto, Sara</creatorcontrib><creatorcontrib>Baldit, Adrien</creatorcontrib><creatorcontrib>Campos Marin, Ana</creatorcontrib><creatorcontrib>Brunelli, Marzia</creatorcontrib><creatorcontrib>Shariatzadeh, Maryam</creatorcontrib><creatorcontrib>Castro, Andre</creatorcontrib><creatorcontrib>Lacroix, Damien</creatorcontrib><title>Collagen Gel Cell Encapsulation to Study Mechanotransduction</title><title>Multiscale Mechanobiology in Tissue Engineering</title><description>Mechanical forces and 3D topological environment can be used to control differentiation of mesenchymal stem cells (MSCs). However, the effects of physical and mechanical cues of the microenvironment on MSC fate determination have not yet been fully understood. This study investigates and compares the effect of mechanical stimulations on soft cellular microspheres when subjected to dynamic fluid compression. Microspheres were produced by gelation of bovine collagen type I with concentrations of 2 mg/ml and 1000–2000 hES-MP cells per 5 μl droplet. A loading condition of 10% dynamic loading was applied by a BOSE BioDynamic bioreactor for 15 and 40 min/day for 5 and 10 days on the cell-seeded collagen microspheres. Cell viability and proliferation, alkaline phosphatase activity and mineralization were compared with controls. Monitoring alkaline phosphatase level reported a significant increase in the enzyme activity by day 14 in loaded samples of 40 min/day loading protocol compared with other experimental conditions. Mineralization was assessed by measuring calcium, phosphorous concentrations and intensity of H&amp;E and alizarin red S staining and showed the highest mineral accumulation in the loaded samples on day 28 post encapsulation. This study indicated that loading of very low cell number seeded on soft natural scaffold can encourage osteogenesis of cells by enhancing both early stage bone marker and mineralization. Self-assembled cell/collagen microspheres present exceptional cell delivery model in bone healing/repair process and field of regenerative medicine.</description><subject>Biomechanics</subject><subject>Collagen microspheres</subject><subject>Dynamic loading</subject><subject>Engineering Sciences</subject><subject>Mechanical engineering</subject><subject>Mechanical stimulation</subject><subject>Mechanics</subject><subject>Mechanics of materials</subject><subject>Osteogenesis</subject><subject>Solid mechanics</subject><subject>Structural mechanics</subject><subject>Tissue engineering</subject><issn>2199-8515</issn><issn>2199-8523</issn><isbn>9811080747</isbn><isbn>9789811080746</isbn><isbn>9789811080753</isbn><isbn>9811080755</isbn><fulltext>true</fulltext><rsrctype>book_chapter</rsrctype><creationdate>2018</creationdate><recordtype>book_chapter</recordtype><recordid>eNo9UMlOwzAQNatoS7-AS64cDDPxGokLikqLVMQBOFtu4rQFk5Q4Qerf46jAaeS3zPg9Qq4QbhBA3WZK00wjRaAalKDMyCMyjWgEEQaIHZNRillGtUjZCRn_EVyd_hMozskYgWulJBd4QaYhvANACiwTwEfkLm-8t2tXJ3Pnk9x5n8zqwu5C7223beqka5KXri_3yZMrNrZuutbWoeyLgbwkZ5X1wU1_54S8Pcxe8wVdPs8f8_sl3aQgOiq1Yjqt4j0OZVXF71as4Bx5KUshJFtlXEkFwpUyK5ViaZmtrKwgLVglATmbkOvD3o31ZtduP227N43dmsX90gxYzCMZSvzGqMWDNkRhvXatWTXNRzAIZujVxAZNbGp4DyWa2Gv0sINn1zZfvQudcYOpcHVM62PsXefaYATXPBVoNDeImv0Amr1zkw</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Perrault, Cécile</creator><creator>Barreto, Sara</creator><creator>Baldit, Adrien</creator><creator>Campos Marin, Ana</creator><creator>Brunelli, Marzia</creator><creator>Shariatzadeh, Maryam</creator><creator>Castro, Andre</creator><creator>Lacroix, Damien</creator><general>Springer Singapore Pte. Limited</general><general>Springer Singapore</general><scope>FFUUA</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-1675-5681</orcidid></search><sort><creationdate>2018</creationdate><title>Collagen Gel Cell Encapsulation to Study Mechanotransduction</title><author>Perrault, Cécile ; Barreto, Sara ; Baldit, Adrien ; Campos Marin, Ana ; Brunelli, Marzia ; Shariatzadeh, Maryam ; Castro, Andre ; Lacroix, Damien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h205t-687382f50440dff852f3c4414d6d5563b9476705ed69d7732d9ba6f02c3f60143</frbrgroupid><rsrctype>book_chapters</rsrctype><prefilter>book_chapters</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biomechanics</topic><topic>Collagen microspheres</topic><topic>Dynamic loading</topic><topic>Engineering Sciences</topic><topic>Mechanical engineering</topic><topic>Mechanical stimulation</topic><topic>Mechanics</topic><topic>Mechanics of materials</topic><topic>Osteogenesis</topic><topic>Solid mechanics</topic><topic>Structural mechanics</topic><topic>Tissue engineering</topic><toplevel>online_resources</toplevel><creatorcontrib>Perrault, Cécile</creatorcontrib><creatorcontrib>Barreto, Sara</creatorcontrib><creatorcontrib>Baldit, Adrien</creatorcontrib><creatorcontrib>Campos Marin, Ana</creatorcontrib><creatorcontrib>Brunelli, Marzia</creatorcontrib><creatorcontrib>Shariatzadeh, Maryam</creatorcontrib><creatorcontrib>Castro, Andre</creatorcontrib><creatorcontrib>Lacroix, Damien</creatorcontrib><collection>ProQuest Ebook Central - Book Chapters - Demo use only</collection><collection>Hyper Article en Ligne (HAL)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Perrault, Cécile</au><au>Barreto, Sara</au><au>Baldit, Adrien</au><au>Campos Marin, Ana</au><au>Brunelli, Marzia</au><au>Shariatzadeh, Maryam</au><au>Castro, Andre</au><au>Lacroix, Damien</au><format>book</format><genre>bookitem</genre><ristype>CHAP</ristype><atitle>Collagen Gel Cell Encapsulation to Study Mechanotransduction</atitle><btitle>Multiscale Mechanobiology in Tissue Engineering</btitle><seriestitle>Frontiers of Biomechanics</seriestitle><date>2018</date><risdate>2018</risdate><volume>3</volume><spage>105</spage><epage>125</epage><pages>105-125</pages><issn>2199-8515</issn><eissn>2199-8523</eissn><isbn>9811080747</isbn><isbn>9789811080746</isbn><eisbn>9789811080753</eisbn><eisbn>9811080755</eisbn><abstract>Mechanical forces and 3D topological environment can be used to control differentiation of mesenchymal stem cells (MSCs). However, the effects of physical and mechanical cues of the microenvironment on MSC fate determination have not yet been fully understood. This study investigates and compares the effect of mechanical stimulations on soft cellular microspheres when subjected to dynamic fluid compression. Microspheres were produced by gelation of bovine collagen type I with concentrations of 2 mg/ml and 1000–2000 hES-MP cells per 5 μl droplet. A loading condition of 10% dynamic loading was applied by a BOSE BioDynamic bioreactor for 15 and 40 min/day for 5 and 10 days on the cell-seeded collagen microspheres. Cell viability and proliferation, alkaline phosphatase activity and mineralization were compared with controls. Monitoring alkaline phosphatase level reported a significant increase in the enzyme activity by day 14 in loaded samples of 40 min/day loading protocol compared with other experimental conditions. Mineralization was assessed by measuring calcium, phosphorous concentrations and intensity of H&amp;E and alizarin red S staining and showed the highest mineral accumulation in the loaded samples on day 28 post encapsulation. This study indicated that loading of very low cell number seeded on soft natural scaffold can encourage osteogenesis of cells by enhancing both early stage bone marker and mineralization. Self-assembled cell/collagen microspheres present exceptional cell delivery model in bone healing/repair process and field of regenerative medicine.</abstract><cop>Singapore</cop><pub>Springer Singapore Pte. Limited</pub><doi>10.1007/978-981-10-8075-3_6</doi><oclcid>1048776451</oclcid><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-1675-5681</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2199-8515
ispartof Multiscale Mechanobiology in Tissue Engineering, 2018, Vol.3, p.105-125
issn 2199-8515
2199-8523
language eng
recordid cdi_hal_primary_oai_HAL_hal_02063161v1
source Springer Books
subjects Biomechanics
Collagen microspheres
Dynamic loading
Engineering Sciences
Mechanical engineering
Mechanical stimulation
Mechanics
Mechanics of materials
Osteogenesis
Solid mechanics
Structural mechanics
Tissue engineering
title Collagen Gel Cell Encapsulation to Study Mechanotransduction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T06%3A08%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=bookitem&rft.atitle=Collagen%20Gel%20Cell%20Encapsulation%20to%20Study%20Mechanotransduction&rft.btitle=Multiscale%20Mechanobiology%20in%20Tissue%20Engineering&rft.au=Perrault,%20C%C3%A9cile&rft.date=2018&rft.volume=3&rft.spage=105&rft.epage=125&rft.pages=105-125&rft.issn=2199-8515&rft.eissn=2199-8523&rft.isbn=9811080747&rft.isbn_list=9789811080746&rft_id=info:doi/10.1007/978-981-10-8075-3_6&rft_dat=%3Cproquest_hal_p%3EEBC5484251_84_118%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&rft.eisbn=9789811080753&rft.eisbn_list=9811080755&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=EBC5484251_84_118&rft_id=info:pmid/&rfr_iscdi=true