Reduced order modeling via PGD for highly transient thermal evolutions in additive manufacturing

In this paper, a highly performing model order reduction technique called Proper Generalized Decomposition (PGD) is applied to the numerical modeling of highly transient non-linear thermal phenomena associated with additive manufacturing (AM) powder bed fabrication (PBF) processes. The manufacturing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods in applied mechanics and engineering 2019-06, Vol.349, p.405-430
Hauptverfasser: Favoretto, B., de Hillerin, C.A., Bettinotti, O., Oancea, V., Barbarulo, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 430
container_issue
container_start_page 405
container_title Computer methods in applied mechanics and engineering
container_volume 349
creator Favoretto, B.
de Hillerin, C.A.
Bettinotti, O.
Oancea, V.
Barbarulo, A.
description In this paper, a highly performing model order reduction technique called Proper Generalized Decomposition (PGD) is applied to the numerical modeling of highly transient non-linear thermal phenomena associated with additive manufacturing (AM) powder bed fabrication (PBF) processes. The manufacturing process allows for unprecedented design freedom but fabricated parts often suffer from lower quality mechanical properties associated with the fast transients and high temperature gradients during the localized melting-solidification process. For this reason, an accurate numerical model for the thermal evolutions is a major necessity. This work focuses on providing a low-cost/high accuracy prediction of the high gradient thermal field occurring in a material under the action of a concentrated moving laser source, while accounting for phase changes, material non-linearities and time and space-dependent boundary conditions. An extensive numerical simulation campaign shows that the use of PGD in this context enables a remarkable reduction in the total number of global matrix inversions (5 times less or better) compared to standard techniques when simulating realistic AM PBF scenarios. •Numerical modeling of highly transient non-linear thermal phenomena.•Towards an effective numerical modeling of additive manufacturing.•Model Order Reduction enables low-cost/high accuracy predictions.•At least one order of magnitude faster than standard techniques.•Several and complex non-linearities are included.
doi_str_mv 10.1016/j.cma.2019.02.033
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02062582v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045782519301045</els_id><sourcerecordid>2226766588</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-d690180f6c6c773d15597722290ef0f919dcc21da2f5129d1964d0c167c668f13</originalsourceid><addsrcrecordid>eNp9kE9r3DAQxUVJoZu0H6A3QU852J2R17JETiFJN4WFltKeVaE_WS22lUiyId--Wrb02LkMDO-9mfkR8hGhRUD--diaSbcMULbAWui6N2SDYpANw05ckA3Atm8Gwfp35DLnI9QSyDbk9w9nF-Msjcm6RKdo3RjmJ7oGTb_v7qmPiR7C02F8pSXpOQc3F1oOLk16pG6N41JCnDMNM9XWhhJWRyc9L16bsqSa9J689XrM7sPffkV-fXn4effY7L_tvt7d7huzBVYayyWgAM8NN8PQWex7OQyMMQnOg5corTEMrWa-RyYtSr61YJAPhnPhsbsi1-fcgx7VcwqTTq8q6qAeb_fqNAMGnPWCrSftp7P2OcWXxeWijnFJcz1P1Y184LwXoqrwrDIp5pyc_xeLoE7Q1VFV6OoEvaarCr16bs4eV19dg0sqm4qsAg7JmaJsDP9x_wHK94i-</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2226766588</pqid></control><display><type>article</type><title>Reduced order modeling via PGD for highly transient thermal evolutions in additive manufacturing</title><source>Elsevier ScienceDirect Journals</source><creator>Favoretto, B. ; de Hillerin, C.A. ; Bettinotti, O. ; Oancea, V. ; Barbarulo, A.</creator><creatorcontrib>Favoretto, B. ; de Hillerin, C.A. ; Bettinotti, O. ; Oancea, V. ; Barbarulo, A.</creatorcontrib><description>In this paper, a highly performing model order reduction technique called Proper Generalized Decomposition (PGD) is applied to the numerical modeling of highly transient non-linear thermal phenomena associated with additive manufacturing (AM) powder bed fabrication (PBF) processes. The manufacturing process allows for unprecedented design freedom but fabricated parts often suffer from lower quality mechanical properties associated with the fast transients and high temperature gradients during the localized melting-solidification process. For this reason, an accurate numerical model for the thermal evolutions is a major necessity. This work focuses on providing a low-cost/high accuracy prediction of the high gradient thermal field occurring in a material under the action of a concentrated moving laser source, while accounting for phase changes, material non-linearities and time and space-dependent boundary conditions. An extensive numerical simulation campaign shows that the use of PGD in this context enables a remarkable reduction in the total number of global matrix inversions (5 times less or better) compared to standard techniques when simulating realistic AM PBF scenarios. •Numerical modeling of highly transient non-linear thermal phenomena.•Towards an effective numerical modeling of additive manufacturing.•Model Order Reduction enables low-cost/high accuracy predictions.•At least one order of magnitude faster than standard techniques.•Several and complex non-linearities are included.</description><identifier>ISSN: 0045-7825</identifier><identifier>EISSN: 1879-2138</identifier><identifier>DOI: 10.1016/j.cma.2019.02.033</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Acoustics ; Additive manufacturing ; AM process simulation ; Boundary conditions ; Computer simulation ; Electromagnetism ; Engineering Sciences ; High temperature ; Inversions ; Mathematical models ; Mechanical engineering ; Mechanical properties ; Mechanics ; Model reduction ; Phase transitions ; Powder bed fabrication ; Powder beds ; Proper generalized decomposition ; Reduced order modeling ; Reduced order models ; Solidification ; Structural mechanics ; Temperature gradients ; Time dependence ; Vibrations</subject><ispartof>Computer methods in applied mechanics and engineering, 2019-06, Vol.349, p.405-430</ispartof><rights>2019 Elsevier B.V.</rights><rights>Copyright Elsevier BV Jun 1, 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-d690180f6c6c773d15597722290ef0f919dcc21da2f5129d1964d0c167c668f13</citedby><cites>FETCH-LOGICAL-c402t-d690180f6c6c773d15597722290ef0f919dcc21da2f5129d1964d0c167c668f13</cites><orcidid>0000-0001-5937-0100</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0045782519301045$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02062582$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Favoretto, B.</creatorcontrib><creatorcontrib>de Hillerin, C.A.</creatorcontrib><creatorcontrib>Bettinotti, O.</creatorcontrib><creatorcontrib>Oancea, V.</creatorcontrib><creatorcontrib>Barbarulo, A.</creatorcontrib><title>Reduced order modeling via PGD for highly transient thermal evolutions in additive manufacturing</title><title>Computer methods in applied mechanics and engineering</title><description>In this paper, a highly performing model order reduction technique called Proper Generalized Decomposition (PGD) is applied to the numerical modeling of highly transient non-linear thermal phenomena associated with additive manufacturing (AM) powder bed fabrication (PBF) processes. The manufacturing process allows for unprecedented design freedom but fabricated parts often suffer from lower quality mechanical properties associated with the fast transients and high temperature gradients during the localized melting-solidification process. For this reason, an accurate numerical model for the thermal evolutions is a major necessity. This work focuses on providing a low-cost/high accuracy prediction of the high gradient thermal field occurring in a material under the action of a concentrated moving laser source, while accounting for phase changes, material non-linearities and time and space-dependent boundary conditions. An extensive numerical simulation campaign shows that the use of PGD in this context enables a remarkable reduction in the total number of global matrix inversions (5 times less or better) compared to standard techniques when simulating realistic AM PBF scenarios. •Numerical modeling of highly transient non-linear thermal phenomena.•Towards an effective numerical modeling of additive manufacturing.•Model Order Reduction enables low-cost/high accuracy predictions.•At least one order of magnitude faster than standard techniques.•Several and complex non-linearities are included.</description><subject>Acoustics</subject><subject>Additive manufacturing</subject><subject>AM process simulation</subject><subject>Boundary conditions</subject><subject>Computer simulation</subject><subject>Electromagnetism</subject><subject>Engineering Sciences</subject><subject>High temperature</subject><subject>Inversions</subject><subject>Mathematical models</subject><subject>Mechanical engineering</subject><subject>Mechanical properties</subject><subject>Mechanics</subject><subject>Model reduction</subject><subject>Phase transitions</subject><subject>Powder bed fabrication</subject><subject>Powder beds</subject><subject>Proper generalized decomposition</subject><subject>Reduced order modeling</subject><subject>Reduced order models</subject><subject>Solidification</subject><subject>Structural mechanics</subject><subject>Temperature gradients</subject><subject>Time dependence</subject><subject>Vibrations</subject><issn>0045-7825</issn><issn>1879-2138</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kE9r3DAQxUVJoZu0H6A3QU852J2R17JETiFJN4WFltKeVaE_WS22lUiyId--Wrb02LkMDO-9mfkR8hGhRUD--diaSbcMULbAWui6N2SDYpANw05ckA3Atm8Gwfp35DLnI9QSyDbk9w9nF-Msjcm6RKdo3RjmJ7oGTb_v7qmPiR7C02F8pSXpOQc3F1oOLk16pG6N41JCnDMNM9XWhhJWRyc9L16bsqSa9J689XrM7sPffkV-fXn4effY7L_tvt7d7huzBVYayyWgAM8NN8PQWex7OQyMMQnOg5corTEMrWa-RyYtSr61YJAPhnPhsbsi1-fcgx7VcwqTTq8q6qAeb_fqNAMGnPWCrSftp7P2OcWXxeWijnFJcz1P1Y184LwXoqrwrDIp5pyc_xeLoE7Q1VFV6OoEvaarCr16bs4eV19dg0sqm4qsAg7JmaJsDP9x_wHK94i-</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Favoretto, B.</creator><creator>de Hillerin, C.A.</creator><creator>Bettinotti, O.</creator><creator>Oancea, V.</creator><creator>Barbarulo, A.</creator><general>Elsevier B.V</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-5937-0100</orcidid></search><sort><creationdate>20190601</creationdate><title>Reduced order modeling via PGD for highly transient thermal evolutions in additive manufacturing</title><author>Favoretto, B. ; de Hillerin, C.A. ; Bettinotti, O. ; Oancea, V. ; Barbarulo, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-d690180f6c6c773d15597722290ef0f919dcc21da2f5129d1964d0c167c668f13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acoustics</topic><topic>Additive manufacturing</topic><topic>AM process simulation</topic><topic>Boundary conditions</topic><topic>Computer simulation</topic><topic>Electromagnetism</topic><topic>Engineering Sciences</topic><topic>High temperature</topic><topic>Inversions</topic><topic>Mathematical models</topic><topic>Mechanical engineering</topic><topic>Mechanical properties</topic><topic>Mechanics</topic><topic>Model reduction</topic><topic>Phase transitions</topic><topic>Powder bed fabrication</topic><topic>Powder beds</topic><topic>Proper generalized decomposition</topic><topic>Reduced order modeling</topic><topic>Reduced order models</topic><topic>Solidification</topic><topic>Structural mechanics</topic><topic>Temperature gradients</topic><topic>Time dependence</topic><topic>Vibrations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Favoretto, B.</creatorcontrib><creatorcontrib>de Hillerin, C.A.</creatorcontrib><creatorcontrib>Bettinotti, O.</creatorcontrib><creatorcontrib>Oancea, V.</creatorcontrib><creatorcontrib>Barbarulo, A.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Computer methods in applied mechanics and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Favoretto, B.</au><au>de Hillerin, C.A.</au><au>Bettinotti, O.</au><au>Oancea, V.</au><au>Barbarulo, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reduced order modeling via PGD for highly transient thermal evolutions in additive manufacturing</atitle><jtitle>Computer methods in applied mechanics and engineering</jtitle><date>2019-06-01</date><risdate>2019</risdate><volume>349</volume><spage>405</spage><epage>430</epage><pages>405-430</pages><issn>0045-7825</issn><eissn>1879-2138</eissn><abstract>In this paper, a highly performing model order reduction technique called Proper Generalized Decomposition (PGD) is applied to the numerical modeling of highly transient non-linear thermal phenomena associated with additive manufacturing (AM) powder bed fabrication (PBF) processes. The manufacturing process allows for unprecedented design freedom but fabricated parts often suffer from lower quality mechanical properties associated with the fast transients and high temperature gradients during the localized melting-solidification process. For this reason, an accurate numerical model for the thermal evolutions is a major necessity. This work focuses on providing a low-cost/high accuracy prediction of the high gradient thermal field occurring in a material under the action of a concentrated moving laser source, while accounting for phase changes, material non-linearities and time and space-dependent boundary conditions. An extensive numerical simulation campaign shows that the use of PGD in this context enables a remarkable reduction in the total number of global matrix inversions (5 times less or better) compared to standard techniques when simulating realistic AM PBF scenarios. •Numerical modeling of highly transient non-linear thermal phenomena.•Towards an effective numerical modeling of additive manufacturing.•Model Order Reduction enables low-cost/high accuracy predictions.•At least one order of magnitude faster than standard techniques.•Several and complex non-linearities are included.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.cma.2019.02.033</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0001-5937-0100</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0045-7825
ispartof Computer methods in applied mechanics and engineering, 2019-06, Vol.349, p.405-430
issn 0045-7825
1879-2138
language eng
recordid cdi_hal_primary_oai_HAL_hal_02062582v1
source Elsevier ScienceDirect Journals
subjects Acoustics
Additive manufacturing
AM process simulation
Boundary conditions
Computer simulation
Electromagnetism
Engineering Sciences
High temperature
Inversions
Mathematical models
Mechanical engineering
Mechanical properties
Mechanics
Model reduction
Phase transitions
Powder bed fabrication
Powder beds
Proper generalized decomposition
Reduced order modeling
Reduced order models
Solidification
Structural mechanics
Temperature gradients
Time dependence
Vibrations
title Reduced order modeling via PGD for highly transient thermal evolutions in additive manufacturing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T16%3A31%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reduced%20order%20modeling%20via%20PGD%20for%20highly%20transient%20thermal%20evolutions%20in%20additive%20manufacturing&rft.jtitle=Computer%20methods%20in%20applied%20mechanics%20and%20engineering&rft.au=Favoretto,%20B.&rft.date=2019-06-01&rft.volume=349&rft.spage=405&rft.epage=430&rft.pages=405-430&rft.issn=0045-7825&rft.eissn=1879-2138&rft_id=info:doi/10.1016/j.cma.2019.02.033&rft_dat=%3Cproquest_hal_p%3E2226766588%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2226766588&rft_id=info:pmid/&rft_els_id=S0045782519301045&rfr_iscdi=true