Delayed-time domain impedance boundary conditions (D-TDIBC)

Defining acoustically well-posed boundary conditions is one of the major numerical and theoretical challenges in compressible Navier–Stokes simulations. We present the novel Delayed-Time Domain Impedance Boundary Condition (D-TDIBC) technique developed to impose a time delay to acoustic wave reflect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2018-10, Vol.371, p.50-66
Hauptverfasser: Douasbin, Q., Scalo, C., Selle, L., Poinsot, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 66
container_issue
container_start_page 50
container_title Journal of computational physics
container_volume 371
creator Douasbin, Q.
Scalo, C.
Selle, L.
Poinsot, T.
description Defining acoustically well-posed boundary conditions is one of the major numerical and theoretical challenges in compressible Navier–Stokes simulations. We present the novel Delayed-Time Domain Impedance Boundary Condition (D-TDIBC) technique developed to impose a time delay to acoustic wave reflection. Unlike previous similar TDIBC derivations (Fung and Ju, 2001–2004 [1,2], Scalo et al., 2015 [3] and Lin et al., 2016 [4]), D-TDIBC relies on the modeling of the reflection coefficient. An iterative fit is used to determine the model constants along with a low-pass filtering strategy to limit the model to the frequency range of interest. D-TDIBC can be used to truncate portions of the domain by introducing a time delay in the acoustic response of the boundary accounting for the travel time of inviscid planar acoustic waves in the truncated sections: it gives the opportunity to save computational resources and to study several geometries without the need to regenerate computational grids. The D-TDIBC method is applied here to time-delayed fully reflective conditions. D-TDIBC simulations of inviscid planar acoustic-wave propagating in truncated ducts demonstrate that the time delay is correctly reproduced, preserving wave amplitude and phase. A 2D thermoacoustically unstable combustion setup is used as a final test case: Direct Numerical Simulation (DNS) of an unstable laminar flame is performed using a reduced domain along with D-TDIBC to model the truncated portion. Results are in excellent agreement with the same calculation performed over the full domain. The unstable modes frequencies, amplitudes and shapes are accurately predicted. The results demonstrate that D-TDIBC offers a flexible and cost-effective approach for numerical investigations of problems in aeroacoustics and thermoacoustics. •Time-delayed acoustic reflection can be imposed using a Delayed-Time Domain Impedance Boundary Condition (D-TDIBC).•D-TDIBC allows to model truncated portions of the computational domain.•A necessary modeling strategy is provided.•Time delays are accurately imposed using D-TDIBC in 1D and 2D.•An excellent agreement is found for a thermoacoustically unstable combustion setup truncated using D-TDIBC.
doi_str_mv 10.1016/j.jcp.2018.05.003
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02057870v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002199911830295X</els_id><sourcerecordid>2111122088</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-92b24b9625505482be5de3bec39e9bb441494f5959e637ce0ad9d57a291221bd3</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsH78AG8BL_aQOLvJJll6qq3aQsFLPS_7McUNTTYmaaH_3i0Rj85lYHjfmXceQh4oJBRo_lwllWkTBrRMgCcA6QWZUBAQs4Lml2QCwGgshKDX5KbvKwAoeVZOyGyJe3VCGw-uxsj6WrkmcnWLVjUGI-0PjVXdKTK-sW5wvumjp2W8Xa5fFtM7crVT-x7vf_st-Xx73S5W8ebjfb2Yb2KTARtiwTTLtMgZ5xBuMo3cYqrRpAKF1llGM5HtuOAC87QwCMoKywvFBGWMapvekum490vtZdu5OgSSXjm5mm_keQYMeFEWcKRB-zhq285_H7AfZOUPXRPiSUZDMQZlGVR0VJnO932Hu7-1FOSZp6xk4CnPPCVwGXgGz2z0YHj16LCTvXEYIFnXoRmk9e4f9w9kjnoL</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2111122088</pqid></control><display><type>article</type><title>Delayed-time domain impedance boundary conditions (D-TDIBC)</title><source>Elsevier ScienceDirect Journals</source><creator>Douasbin, Q. ; Scalo, C. ; Selle, L. ; Poinsot, T.</creator><creatorcontrib>Douasbin, Q. ; Scalo, C. ; Selle, L. ; Poinsot, T.</creatorcontrib><description>Defining acoustically well-posed boundary conditions is one of the major numerical and theoretical challenges in compressible Navier–Stokes simulations. We present the novel Delayed-Time Domain Impedance Boundary Condition (D-TDIBC) technique developed to impose a time delay to acoustic wave reflection. Unlike previous similar TDIBC derivations (Fung and Ju, 2001–2004 [1,2], Scalo et al., 2015 [3] and Lin et al., 2016 [4]), D-TDIBC relies on the modeling of the reflection coefficient. An iterative fit is used to determine the model constants along with a low-pass filtering strategy to limit the model to the frequency range of interest. D-TDIBC can be used to truncate portions of the domain by introducing a time delay in the acoustic response of the boundary accounting for the travel time of inviscid planar acoustic waves in the truncated sections: it gives the opportunity to save computational resources and to study several geometries without the need to regenerate computational grids. The D-TDIBC method is applied here to time-delayed fully reflective conditions. D-TDIBC simulations of inviscid planar acoustic-wave propagating in truncated ducts demonstrate that the time delay is correctly reproduced, preserving wave amplitude and phase. A 2D thermoacoustically unstable combustion setup is used as a final test case: Direct Numerical Simulation (DNS) of an unstable laminar flame is performed using a reduced domain along with D-TDIBC to model the truncated portion. Results are in excellent agreement with the same calculation performed over the full domain. The unstable modes frequencies, amplitudes and shapes are accurately predicted. The results demonstrate that D-TDIBC offers a flexible and cost-effective approach for numerical investigations of problems in aeroacoustics and thermoacoustics. •Time-delayed acoustic reflection can be imposed using a Delayed-Time Domain Impedance Boundary Condition (D-TDIBC).•D-TDIBC allows to model truncated portions of the computational domain.•A necessary modeling strategy is provided.•Time delays are accurately imposed using D-TDIBC in 1D and 2D.•An excellent agreement is found for a thermoacoustically unstable combustion setup truncated using D-TDIBC.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2018.05.003</identifier><language>eng</language><publisher>Cambridge: Elsevier Inc</publisher><subject>Acoustic impedance ; Acoustic propagation ; Acoustic waves ; Acoustics ; Aeroacoustics ; Amplitudes ; Boundary conditions ; Characteristic boundary conditions ; Compressibility ; Computational aeroacoustics ; Computational fluid dynamics ; Computational grids ; Computational physics ; Computer simulation ; Delay ; Direct numerical simulation ; Domain names ; Ducts ; Flames ; Fluid mechanics ; Impedance boundary condition ; Iterative methods ; Low pass filters ; Mathematical models ; Mechanics ; NSCBC ; Physics ; Reflectance ; Thermoacoustics ; Time delay ; Time domain analysis ; Time lag ; Wave propagation ; Wave reflection ; Well posed problems</subject><ispartof>Journal of computational physics, 2018-10, Vol.371, p.50-66</ispartof><rights>2018 Elsevier Inc.</rights><rights>Copyright Elsevier Science Ltd. Oct 15, 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-92b24b9625505482be5de3bec39e9bb441494f5959e637ce0ad9d57a291221bd3</citedby><cites>FETCH-LOGICAL-c402t-92b24b9625505482be5de3bec39e9bb441494f5959e637ce0ad9d57a291221bd3</cites><orcidid>0000-0002-5997-3646 ; 0000-0001-8383-3961</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S002199911830295X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02057870$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Douasbin, Q.</creatorcontrib><creatorcontrib>Scalo, C.</creatorcontrib><creatorcontrib>Selle, L.</creatorcontrib><creatorcontrib>Poinsot, T.</creatorcontrib><title>Delayed-time domain impedance boundary conditions (D-TDIBC)</title><title>Journal of computational physics</title><description>Defining acoustically well-posed boundary conditions is one of the major numerical and theoretical challenges in compressible Navier–Stokes simulations. We present the novel Delayed-Time Domain Impedance Boundary Condition (D-TDIBC) technique developed to impose a time delay to acoustic wave reflection. Unlike previous similar TDIBC derivations (Fung and Ju, 2001–2004 [1,2], Scalo et al., 2015 [3] and Lin et al., 2016 [4]), D-TDIBC relies on the modeling of the reflection coefficient. An iterative fit is used to determine the model constants along with a low-pass filtering strategy to limit the model to the frequency range of interest. D-TDIBC can be used to truncate portions of the domain by introducing a time delay in the acoustic response of the boundary accounting for the travel time of inviscid planar acoustic waves in the truncated sections: it gives the opportunity to save computational resources and to study several geometries without the need to regenerate computational grids. The D-TDIBC method is applied here to time-delayed fully reflective conditions. D-TDIBC simulations of inviscid planar acoustic-wave propagating in truncated ducts demonstrate that the time delay is correctly reproduced, preserving wave amplitude and phase. A 2D thermoacoustically unstable combustion setup is used as a final test case: Direct Numerical Simulation (DNS) of an unstable laminar flame is performed using a reduced domain along with D-TDIBC to model the truncated portion. Results are in excellent agreement with the same calculation performed over the full domain. The unstable modes frequencies, amplitudes and shapes are accurately predicted. The results demonstrate that D-TDIBC offers a flexible and cost-effective approach for numerical investigations of problems in aeroacoustics and thermoacoustics. •Time-delayed acoustic reflection can be imposed using a Delayed-Time Domain Impedance Boundary Condition (D-TDIBC).•D-TDIBC allows to model truncated portions of the computational domain.•A necessary modeling strategy is provided.•Time delays are accurately imposed using D-TDIBC in 1D and 2D.•An excellent agreement is found for a thermoacoustically unstable combustion setup truncated using D-TDIBC.</description><subject>Acoustic impedance</subject><subject>Acoustic propagation</subject><subject>Acoustic waves</subject><subject>Acoustics</subject><subject>Aeroacoustics</subject><subject>Amplitudes</subject><subject>Boundary conditions</subject><subject>Characteristic boundary conditions</subject><subject>Compressibility</subject><subject>Computational aeroacoustics</subject><subject>Computational fluid dynamics</subject><subject>Computational grids</subject><subject>Computational physics</subject><subject>Computer simulation</subject><subject>Delay</subject><subject>Direct numerical simulation</subject><subject>Domain names</subject><subject>Ducts</subject><subject>Flames</subject><subject>Fluid mechanics</subject><subject>Impedance boundary condition</subject><subject>Iterative methods</subject><subject>Low pass filters</subject><subject>Mathematical models</subject><subject>Mechanics</subject><subject>NSCBC</subject><subject>Physics</subject><subject>Reflectance</subject><subject>Thermoacoustics</subject><subject>Time delay</subject><subject>Time domain analysis</subject><subject>Time lag</subject><subject>Wave propagation</subject><subject>Wave reflection</subject><subject>Well posed problems</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRsH78AG8BL_aQOLvJJll6qq3aQsFLPS_7McUNTTYmaaH_3i0Rj85lYHjfmXceQh4oJBRo_lwllWkTBrRMgCcA6QWZUBAQs4Lml2QCwGgshKDX5KbvKwAoeVZOyGyJe3VCGw-uxsj6WrkmcnWLVjUGI-0PjVXdKTK-sW5wvumjp2W8Xa5fFtM7crVT-x7vf_st-Xx73S5W8ebjfb2Yb2KTARtiwTTLtMgZ5xBuMo3cYqrRpAKF1llGM5HtuOAC87QwCMoKywvFBGWMapvekum490vtZdu5OgSSXjm5mm_keQYMeFEWcKRB-zhq285_H7AfZOUPXRPiSUZDMQZlGVR0VJnO932Hu7-1FOSZp6xk4CnPPCVwGXgGz2z0YHj16LCTvXEYIFnXoRmk9e4f9w9kjnoL</recordid><startdate>20181015</startdate><enddate>20181015</enddate><creator>Douasbin, Q.</creator><creator>Scalo, C.</creator><creator>Selle, L.</creator><creator>Poinsot, T.</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-5997-3646</orcidid><orcidid>https://orcid.org/0000-0001-8383-3961</orcidid></search><sort><creationdate>20181015</creationdate><title>Delayed-time domain impedance boundary conditions (D-TDIBC)</title><author>Douasbin, Q. ; Scalo, C. ; Selle, L. ; Poinsot, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-92b24b9625505482be5de3bec39e9bb441494f5959e637ce0ad9d57a291221bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acoustic impedance</topic><topic>Acoustic propagation</topic><topic>Acoustic waves</topic><topic>Acoustics</topic><topic>Aeroacoustics</topic><topic>Amplitudes</topic><topic>Boundary conditions</topic><topic>Characteristic boundary conditions</topic><topic>Compressibility</topic><topic>Computational aeroacoustics</topic><topic>Computational fluid dynamics</topic><topic>Computational grids</topic><topic>Computational physics</topic><topic>Computer simulation</topic><topic>Delay</topic><topic>Direct numerical simulation</topic><topic>Domain names</topic><topic>Ducts</topic><topic>Flames</topic><topic>Fluid mechanics</topic><topic>Impedance boundary condition</topic><topic>Iterative methods</topic><topic>Low pass filters</topic><topic>Mathematical models</topic><topic>Mechanics</topic><topic>NSCBC</topic><topic>Physics</topic><topic>Reflectance</topic><topic>Thermoacoustics</topic><topic>Time delay</topic><topic>Time domain analysis</topic><topic>Time lag</topic><topic>Wave propagation</topic><topic>Wave reflection</topic><topic>Well posed problems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Douasbin, Q.</creatorcontrib><creatorcontrib>Scalo, C.</creatorcontrib><creatorcontrib>Selle, L.</creatorcontrib><creatorcontrib>Poinsot, T.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Douasbin, Q.</au><au>Scalo, C.</au><au>Selle, L.</au><au>Poinsot, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Delayed-time domain impedance boundary conditions (D-TDIBC)</atitle><jtitle>Journal of computational physics</jtitle><date>2018-10-15</date><risdate>2018</risdate><volume>371</volume><spage>50</spage><epage>66</epage><pages>50-66</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>Defining acoustically well-posed boundary conditions is one of the major numerical and theoretical challenges in compressible Navier–Stokes simulations. We present the novel Delayed-Time Domain Impedance Boundary Condition (D-TDIBC) technique developed to impose a time delay to acoustic wave reflection. Unlike previous similar TDIBC derivations (Fung and Ju, 2001–2004 [1,2], Scalo et al., 2015 [3] and Lin et al., 2016 [4]), D-TDIBC relies on the modeling of the reflection coefficient. An iterative fit is used to determine the model constants along with a low-pass filtering strategy to limit the model to the frequency range of interest. D-TDIBC can be used to truncate portions of the domain by introducing a time delay in the acoustic response of the boundary accounting for the travel time of inviscid planar acoustic waves in the truncated sections: it gives the opportunity to save computational resources and to study several geometries without the need to regenerate computational grids. The D-TDIBC method is applied here to time-delayed fully reflective conditions. D-TDIBC simulations of inviscid planar acoustic-wave propagating in truncated ducts demonstrate that the time delay is correctly reproduced, preserving wave amplitude and phase. A 2D thermoacoustically unstable combustion setup is used as a final test case: Direct Numerical Simulation (DNS) of an unstable laminar flame is performed using a reduced domain along with D-TDIBC to model the truncated portion. Results are in excellent agreement with the same calculation performed over the full domain. The unstable modes frequencies, amplitudes and shapes are accurately predicted. The results demonstrate that D-TDIBC offers a flexible and cost-effective approach for numerical investigations of problems in aeroacoustics and thermoacoustics. •Time-delayed acoustic reflection can be imposed using a Delayed-Time Domain Impedance Boundary Condition (D-TDIBC).•D-TDIBC allows to model truncated portions of the computational domain.•A necessary modeling strategy is provided.•Time delays are accurately imposed using D-TDIBC in 1D and 2D.•An excellent agreement is found for a thermoacoustically unstable combustion setup truncated using D-TDIBC.</abstract><cop>Cambridge</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2018.05.003</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-5997-3646</orcidid><orcidid>https://orcid.org/0000-0001-8383-3961</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2018-10, Vol.371, p.50-66
issn 0021-9991
1090-2716
language eng
recordid cdi_hal_primary_oai_HAL_hal_02057870v1
source Elsevier ScienceDirect Journals
subjects Acoustic impedance
Acoustic propagation
Acoustic waves
Acoustics
Aeroacoustics
Amplitudes
Boundary conditions
Characteristic boundary conditions
Compressibility
Computational aeroacoustics
Computational fluid dynamics
Computational grids
Computational physics
Computer simulation
Delay
Direct numerical simulation
Domain names
Ducts
Flames
Fluid mechanics
Impedance boundary condition
Iterative methods
Low pass filters
Mathematical models
Mechanics
NSCBC
Physics
Reflectance
Thermoacoustics
Time delay
Time domain analysis
Time lag
Wave propagation
Wave reflection
Well posed problems
title Delayed-time domain impedance boundary conditions (D-TDIBC)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T23%3A21%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Delayed-time%20domain%20impedance%20boundary%20conditions%20(D-TDIBC)&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Douasbin,%20Q.&rft.date=2018-10-15&rft.volume=371&rft.spage=50&rft.epage=66&rft.pages=50-66&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2018.05.003&rft_dat=%3Cproquest_hal_p%3E2111122088%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2111122088&rft_id=info:pmid/&rft_els_id=S002199911830295X&rfr_iscdi=true