Delayed-time domain impedance boundary conditions (D-TDIBC)
Defining acoustically well-posed boundary conditions is one of the major numerical and theoretical challenges in compressible Navier–Stokes simulations. We present the novel Delayed-Time Domain Impedance Boundary Condition (D-TDIBC) technique developed to impose a time delay to acoustic wave reflect...
Gespeichert in:
Veröffentlicht in: | Journal of computational physics 2018-10, Vol.371, p.50-66 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 66 |
---|---|
container_issue | |
container_start_page | 50 |
container_title | Journal of computational physics |
container_volume | 371 |
creator | Douasbin, Q. Scalo, C. Selle, L. Poinsot, T. |
description | Defining acoustically well-posed boundary conditions is one of the major numerical and theoretical challenges in compressible Navier–Stokes simulations. We present the novel Delayed-Time Domain Impedance Boundary Condition (D-TDIBC) technique developed to impose a time delay to acoustic wave reflection. Unlike previous similar TDIBC derivations (Fung and Ju, 2001–2004 [1,2], Scalo et al., 2015 [3] and Lin et al., 2016 [4]), D-TDIBC relies on the modeling of the reflection coefficient. An iterative fit is used to determine the model constants along with a low-pass filtering strategy to limit the model to the frequency range of interest. D-TDIBC can be used to truncate portions of the domain by introducing a time delay in the acoustic response of the boundary accounting for the travel time of inviscid planar acoustic waves in the truncated sections: it gives the opportunity to save computational resources and to study several geometries without the need to regenerate computational grids. The D-TDIBC method is applied here to time-delayed fully reflective conditions. D-TDIBC simulations of inviscid planar acoustic-wave propagating in truncated ducts demonstrate that the time delay is correctly reproduced, preserving wave amplitude and phase. A 2D thermoacoustically unstable combustion setup is used as a final test case: Direct Numerical Simulation (DNS) of an unstable laminar flame is performed using a reduced domain along with D-TDIBC to model the truncated portion. Results are in excellent agreement with the same calculation performed over the full domain. The unstable modes frequencies, amplitudes and shapes are accurately predicted. The results demonstrate that D-TDIBC offers a flexible and cost-effective approach for numerical investigations of problems in aeroacoustics and thermoacoustics.
•Time-delayed acoustic reflection can be imposed using a Delayed-Time Domain Impedance Boundary Condition (D-TDIBC).•D-TDIBC allows to model truncated portions of the computational domain.•A necessary modeling strategy is provided.•Time delays are accurately imposed using D-TDIBC in 1D and 2D.•An excellent agreement is found for a thermoacoustically unstable combustion setup truncated using D-TDIBC. |
doi_str_mv | 10.1016/j.jcp.2018.05.003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02057870v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S002199911830295X</els_id><sourcerecordid>2111122088</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-92b24b9625505482be5de3bec39e9bb441494f5959e637ce0ad9d57a291221bd3</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsH78AG8BL_aQOLvJJll6qq3aQsFLPS_7McUNTTYmaaH_3i0Rj85lYHjfmXceQh4oJBRo_lwllWkTBrRMgCcA6QWZUBAQs4Lml2QCwGgshKDX5KbvKwAoeVZOyGyJe3VCGw-uxsj6WrkmcnWLVjUGI-0PjVXdKTK-sW5wvumjp2W8Xa5fFtM7crVT-x7vf_st-Xx73S5W8ebjfb2Yb2KTARtiwTTLtMgZ5xBuMo3cYqrRpAKF1llGM5HtuOAC87QwCMoKywvFBGWMapvekum490vtZdu5OgSSXjm5mm_keQYMeFEWcKRB-zhq285_H7AfZOUPXRPiSUZDMQZlGVR0VJnO932Hu7-1FOSZp6xk4CnPPCVwGXgGz2z0YHj16LCTvXEYIFnXoRmk9e4f9w9kjnoL</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2111122088</pqid></control><display><type>article</type><title>Delayed-time domain impedance boundary conditions (D-TDIBC)</title><source>Elsevier ScienceDirect Journals</source><creator>Douasbin, Q. ; Scalo, C. ; Selle, L. ; Poinsot, T.</creator><creatorcontrib>Douasbin, Q. ; Scalo, C. ; Selle, L. ; Poinsot, T.</creatorcontrib><description>Defining acoustically well-posed boundary conditions is one of the major numerical and theoretical challenges in compressible Navier–Stokes simulations. We present the novel Delayed-Time Domain Impedance Boundary Condition (D-TDIBC) technique developed to impose a time delay to acoustic wave reflection. Unlike previous similar TDIBC derivations (Fung and Ju, 2001–2004 [1,2], Scalo et al., 2015 [3] and Lin et al., 2016 [4]), D-TDIBC relies on the modeling of the reflection coefficient. An iterative fit is used to determine the model constants along with a low-pass filtering strategy to limit the model to the frequency range of interest. D-TDIBC can be used to truncate portions of the domain by introducing a time delay in the acoustic response of the boundary accounting for the travel time of inviscid planar acoustic waves in the truncated sections: it gives the opportunity to save computational resources and to study several geometries without the need to regenerate computational grids. The D-TDIBC method is applied here to time-delayed fully reflective conditions. D-TDIBC simulations of inviscid planar acoustic-wave propagating in truncated ducts demonstrate that the time delay is correctly reproduced, preserving wave amplitude and phase. A 2D thermoacoustically unstable combustion setup is used as a final test case: Direct Numerical Simulation (DNS) of an unstable laminar flame is performed using a reduced domain along with D-TDIBC to model the truncated portion. Results are in excellent agreement with the same calculation performed over the full domain. The unstable modes frequencies, amplitudes and shapes are accurately predicted. The results demonstrate that D-TDIBC offers a flexible and cost-effective approach for numerical investigations of problems in aeroacoustics and thermoacoustics.
•Time-delayed acoustic reflection can be imposed using a Delayed-Time Domain Impedance Boundary Condition (D-TDIBC).•D-TDIBC allows to model truncated portions of the computational domain.•A necessary modeling strategy is provided.•Time delays are accurately imposed using D-TDIBC in 1D and 2D.•An excellent agreement is found for a thermoacoustically unstable combustion setup truncated using D-TDIBC.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2018.05.003</identifier><language>eng</language><publisher>Cambridge: Elsevier Inc</publisher><subject>Acoustic impedance ; Acoustic propagation ; Acoustic waves ; Acoustics ; Aeroacoustics ; Amplitudes ; Boundary conditions ; Characteristic boundary conditions ; Compressibility ; Computational aeroacoustics ; Computational fluid dynamics ; Computational grids ; Computational physics ; Computer simulation ; Delay ; Direct numerical simulation ; Domain names ; Ducts ; Flames ; Fluid mechanics ; Impedance boundary condition ; Iterative methods ; Low pass filters ; Mathematical models ; Mechanics ; NSCBC ; Physics ; Reflectance ; Thermoacoustics ; Time delay ; Time domain analysis ; Time lag ; Wave propagation ; Wave reflection ; Well posed problems</subject><ispartof>Journal of computational physics, 2018-10, Vol.371, p.50-66</ispartof><rights>2018 Elsevier Inc.</rights><rights>Copyright Elsevier Science Ltd. Oct 15, 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-92b24b9625505482be5de3bec39e9bb441494f5959e637ce0ad9d57a291221bd3</citedby><cites>FETCH-LOGICAL-c402t-92b24b9625505482be5de3bec39e9bb441494f5959e637ce0ad9d57a291221bd3</cites><orcidid>0000-0002-5997-3646 ; 0000-0001-8383-3961</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S002199911830295X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02057870$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Douasbin, Q.</creatorcontrib><creatorcontrib>Scalo, C.</creatorcontrib><creatorcontrib>Selle, L.</creatorcontrib><creatorcontrib>Poinsot, T.</creatorcontrib><title>Delayed-time domain impedance boundary conditions (D-TDIBC)</title><title>Journal of computational physics</title><description>Defining acoustically well-posed boundary conditions is one of the major numerical and theoretical challenges in compressible Navier–Stokes simulations. We present the novel Delayed-Time Domain Impedance Boundary Condition (D-TDIBC) technique developed to impose a time delay to acoustic wave reflection. Unlike previous similar TDIBC derivations (Fung and Ju, 2001–2004 [1,2], Scalo et al., 2015 [3] and Lin et al., 2016 [4]), D-TDIBC relies on the modeling of the reflection coefficient. An iterative fit is used to determine the model constants along with a low-pass filtering strategy to limit the model to the frequency range of interest. D-TDIBC can be used to truncate portions of the domain by introducing a time delay in the acoustic response of the boundary accounting for the travel time of inviscid planar acoustic waves in the truncated sections: it gives the opportunity to save computational resources and to study several geometries without the need to regenerate computational grids. The D-TDIBC method is applied here to time-delayed fully reflective conditions. D-TDIBC simulations of inviscid planar acoustic-wave propagating in truncated ducts demonstrate that the time delay is correctly reproduced, preserving wave amplitude and phase. A 2D thermoacoustically unstable combustion setup is used as a final test case: Direct Numerical Simulation (DNS) of an unstable laminar flame is performed using a reduced domain along with D-TDIBC to model the truncated portion. Results are in excellent agreement with the same calculation performed over the full domain. The unstable modes frequencies, amplitudes and shapes are accurately predicted. The results demonstrate that D-TDIBC offers a flexible and cost-effective approach for numerical investigations of problems in aeroacoustics and thermoacoustics.
•Time-delayed acoustic reflection can be imposed using a Delayed-Time Domain Impedance Boundary Condition (D-TDIBC).•D-TDIBC allows to model truncated portions of the computational domain.•A necessary modeling strategy is provided.•Time delays are accurately imposed using D-TDIBC in 1D and 2D.•An excellent agreement is found for a thermoacoustically unstable combustion setup truncated using D-TDIBC.</description><subject>Acoustic impedance</subject><subject>Acoustic propagation</subject><subject>Acoustic waves</subject><subject>Acoustics</subject><subject>Aeroacoustics</subject><subject>Amplitudes</subject><subject>Boundary conditions</subject><subject>Characteristic boundary conditions</subject><subject>Compressibility</subject><subject>Computational aeroacoustics</subject><subject>Computational fluid dynamics</subject><subject>Computational grids</subject><subject>Computational physics</subject><subject>Computer simulation</subject><subject>Delay</subject><subject>Direct numerical simulation</subject><subject>Domain names</subject><subject>Ducts</subject><subject>Flames</subject><subject>Fluid mechanics</subject><subject>Impedance boundary condition</subject><subject>Iterative methods</subject><subject>Low pass filters</subject><subject>Mathematical models</subject><subject>Mechanics</subject><subject>NSCBC</subject><subject>Physics</subject><subject>Reflectance</subject><subject>Thermoacoustics</subject><subject>Time delay</subject><subject>Time domain analysis</subject><subject>Time lag</subject><subject>Wave propagation</subject><subject>Wave reflection</subject><subject>Well posed problems</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE1Lw0AQhhdRsH78AG8BL_aQOLvJJll6qq3aQsFLPS_7McUNTTYmaaH_3i0Rj85lYHjfmXceQh4oJBRo_lwllWkTBrRMgCcA6QWZUBAQs4Lml2QCwGgshKDX5KbvKwAoeVZOyGyJe3VCGw-uxsj6WrkmcnWLVjUGI-0PjVXdKTK-sW5wvumjp2W8Xa5fFtM7crVT-x7vf_st-Xx73S5W8ebjfb2Yb2KTARtiwTTLtMgZ5xBuMo3cYqrRpAKF1llGM5HtuOAC87QwCMoKywvFBGWMapvekum490vtZdu5OgSSXjm5mm_keQYMeFEWcKRB-zhq285_H7AfZOUPXRPiSUZDMQZlGVR0VJnO932Hu7-1FOSZp6xk4CnPPCVwGXgGz2z0YHj16LCTvXEYIFnXoRmk9e4f9w9kjnoL</recordid><startdate>20181015</startdate><enddate>20181015</enddate><creator>Douasbin, Q.</creator><creator>Scalo, C.</creator><creator>Selle, L.</creator><creator>Poinsot, T.</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-5997-3646</orcidid><orcidid>https://orcid.org/0000-0001-8383-3961</orcidid></search><sort><creationdate>20181015</creationdate><title>Delayed-time domain impedance boundary conditions (D-TDIBC)</title><author>Douasbin, Q. ; Scalo, C. ; Selle, L. ; Poinsot, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-92b24b9625505482be5de3bec39e9bb441494f5959e637ce0ad9d57a291221bd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acoustic impedance</topic><topic>Acoustic propagation</topic><topic>Acoustic waves</topic><topic>Acoustics</topic><topic>Aeroacoustics</topic><topic>Amplitudes</topic><topic>Boundary conditions</topic><topic>Characteristic boundary conditions</topic><topic>Compressibility</topic><topic>Computational aeroacoustics</topic><topic>Computational fluid dynamics</topic><topic>Computational grids</topic><topic>Computational physics</topic><topic>Computer simulation</topic><topic>Delay</topic><topic>Direct numerical simulation</topic><topic>Domain names</topic><topic>Ducts</topic><topic>Flames</topic><topic>Fluid mechanics</topic><topic>Impedance boundary condition</topic><topic>Iterative methods</topic><topic>Low pass filters</topic><topic>Mathematical models</topic><topic>Mechanics</topic><topic>NSCBC</topic><topic>Physics</topic><topic>Reflectance</topic><topic>Thermoacoustics</topic><topic>Time delay</topic><topic>Time domain analysis</topic><topic>Time lag</topic><topic>Wave propagation</topic><topic>Wave reflection</topic><topic>Well posed problems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Douasbin, Q.</creatorcontrib><creatorcontrib>Scalo, C.</creatorcontrib><creatorcontrib>Selle, L.</creatorcontrib><creatorcontrib>Poinsot, T.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Douasbin, Q.</au><au>Scalo, C.</au><au>Selle, L.</au><au>Poinsot, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Delayed-time domain impedance boundary conditions (D-TDIBC)</atitle><jtitle>Journal of computational physics</jtitle><date>2018-10-15</date><risdate>2018</risdate><volume>371</volume><spage>50</spage><epage>66</epage><pages>50-66</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>Defining acoustically well-posed boundary conditions is one of the major numerical and theoretical challenges in compressible Navier–Stokes simulations. We present the novel Delayed-Time Domain Impedance Boundary Condition (D-TDIBC) technique developed to impose a time delay to acoustic wave reflection. Unlike previous similar TDIBC derivations (Fung and Ju, 2001–2004 [1,2], Scalo et al., 2015 [3] and Lin et al., 2016 [4]), D-TDIBC relies on the modeling of the reflection coefficient. An iterative fit is used to determine the model constants along with a low-pass filtering strategy to limit the model to the frequency range of interest. D-TDIBC can be used to truncate portions of the domain by introducing a time delay in the acoustic response of the boundary accounting for the travel time of inviscid planar acoustic waves in the truncated sections: it gives the opportunity to save computational resources and to study several geometries without the need to regenerate computational grids. The D-TDIBC method is applied here to time-delayed fully reflective conditions. D-TDIBC simulations of inviscid planar acoustic-wave propagating in truncated ducts demonstrate that the time delay is correctly reproduced, preserving wave amplitude and phase. A 2D thermoacoustically unstable combustion setup is used as a final test case: Direct Numerical Simulation (DNS) of an unstable laminar flame is performed using a reduced domain along with D-TDIBC to model the truncated portion. Results are in excellent agreement with the same calculation performed over the full domain. The unstable modes frequencies, amplitudes and shapes are accurately predicted. The results demonstrate that D-TDIBC offers a flexible and cost-effective approach for numerical investigations of problems in aeroacoustics and thermoacoustics.
•Time-delayed acoustic reflection can be imposed using a Delayed-Time Domain Impedance Boundary Condition (D-TDIBC).•D-TDIBC allows to model truncated portions of the computational domain.•A necessary modeling strategy is provided.•Time delays are accurately imposed using D-TDIBC in 1D and 2D.•An excellent agreement is found for a thermoacoustically unstable combustion setup truncated using D-TDIBC.</abstract><cop>Cambridge</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2018.05.003</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-5997-3646</orcidid><orcidid>https://orcid.org/0000-0001-8383-3961</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9991 |
ispartof | Journal of computational physics, 2018-10, Vol.371, p.50-66 |
issn | 0021-9991 1090-2716 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02057870v1 |
source | Elsevier ScienceDirect Journals |
subjects | Acoustic impedance Acoustic propagation Acoustic waves Acoustics Aeroacoustics Amplitudes Boundary conditions Characteristic boundary conditions Compressibility Computational aeroacoustics Computational fluid dynamics Computational grids Computational physics Computer simulation Delay Direct numerical simulation Domain names Ducts Flames Fluid mechanics Impedance boundary condition Iterative methods Low pass filters Mathematical models Mechanics NSCBC Physics Reflectance Thermoacoustics Time delay Time domain analysis Time lag Wave propagation Wave reflection Well posed problems |
title | Delayed-time domain impedance boundary conditions (D-TDIBC) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T23%3A21%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Delayed-time%20domain%20impedance%20boundary%20conditions%20(D-TDIBC)&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Douasbin,%20Q.&rft.date=2018-10-15&rft.volume=371&rft.spage=50&rft.epage=66&rft.pages=50-66&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2018.05.003&rft_dat=%3Cproquest_hal_p%3E2111122088%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2111122088&rft_id=info:pmid/&rft_els_id=S002199911830295X&rfr_iscdi=true |