Simplified account of Rayleigh streaming for the description of nonlinear processes leading to steady state sound in thermoacoustic engines
This paper focuses on the transient regime of wave amplitude growth and stabilization occuring in a standing wave thermoacoustic engine. Experiments are performed on a simple apparatus consisting of an open ended thermoacoustic oscillator with atmospheric air as working fluid. The results show that,...
Gespeichert in:
Veröffentlicht in: | International journal of heat and mass transfer 2012-10, Vol.55 (21-22), p.6042-6053 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6053 |
---|---|
container_issue | 21-22 |
container_start_page | 6042 |
container_title | International journal of heat and mass transfer |
container_volume | 55 |
creator | Penelet, Guillaume Guedra, Matthieu Gusev, Vitalyi Devaux, Thibaut |
description | This paper focuses on the transient regime of wave amplitude growth and stabilization occuring in a standing wave thermoacoustic engine. Experiments are performed on a simple apparatus consisting of an open ended thermoacoustic oscillator with atmospheric air as working fluid. The results show that, even in that simple device, the transient regime leading to steady state sound exhibits complicated dynamics, like the systematic overshoot of wave amplitude before its final stabilization, and the spontaneous and periodic switch on/off of the thermoacoustic instability at constant heat power supply. A simplified model is then presented which describes wave amplitude growth from the coupled equations describing thermoacoustic amplification and unsteady heat transfer. In this model, the assumption of a one-dimensional and exponential temperature profile is retained and the equations describing heat transfer through the thermoacoustic core are substantially simplified into a set of ordinary differential equations. These equations include the description of two processes saturating wave amplitude growth, i.e. thermoacoustic heat pumping and heat convection by acoustic streaming. It is notably shown that accounting for the effect of acoustic streaming allows to reproduce qualitatively the overshoot process. |
doi_str_mv | 10.1016/j.ijheatmasstransfer.2012.06.015 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02057399v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931012004358</els_id><sourcerecordid>1082217704</sourcerecordid><originalsourceid>FETCH-LOGICAL-c497t-6273e28d30f6e295eabd99ffc81532255027e66dd435be251d15daf134aeacae3</originalsourceid><addsrcrecordid>eNqNkcluFDEQhlsIJIbAO_iCFA7d8dLrjSgCQjQSEsvZqtjlGY-67cHlRJpn4KVxa6JcuHDyoq--suuvqkvBG8FFf3Vo_GGPkBcgygkCOUyN5EI2vG-46F5UGzEOUy3FOL2sNpyLoZ6U4K-rN0SH9cjbflP9-eGX4-ydR8vAmPgQMouOfYfTjH63Z8WNsPiwYy4mlvfILJJJ_ph9DCsZYph9QEjsmKJBIiQ2I9i1JMdSX_anskBGRkVvmQ-rJy0RSjvK3jAMu6Kgt9UrBzPhu6f1ovr1-dPPm9t6--3L15vrbW3aach1LweFcrSKux7l1CHc22lyzoyiU1J2HZcD9r21reruUXbCis6CE6oFBAOoLqoPZ-8eZn1MfoF00hG8vr3e6vWOS94NapoeRWEvz2z53e8HpKwXTwbnGQKW12vBRynFUIZZ0I9n1KRIlNA9uwXXa2b6oP_NTK-Zad7rkllRvH_qBmRgdoUxnp49speqVeNQuLszh2VMj75YyHgMBq1PaLK20f9_079iGLzE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082217704</pqid></control><display><type>article</type><title>Simplified account of Rayleigh streaming for the description of nonlinear processes leading to steady state sound in thermoacoustic engines</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Penelet, Guillaume ; Guedra, Matthieu ; Gusev, Vitalyi ; Devaux, Thibaut</creator><creatorcontrib>Penelet, Guillaume ; Guedra, Matthieu ; Gusev, Vitalyi ; Devaux, Thibaut</creatorcontrib><description>This paper focuses on the transient regime of wave amplitude growth and stabilization occuring in a standing wave thermoacoustic engine. Experiments are performed on a simple apparatus consisting of an open ended thermoacoustic oscillator with atmospheric air as working fluid. The results show that, even in that simple device, the transient regime leading to steady state sound exhibits complicated dynamics, like the systematic overshoot of wave amplitude before its final stabilization, and the spontaneous and periodic switch on/off of the thermoacoustic instability at constant heat power supply. A simplified model is then presented which describes wave amplitude growth from the coupled equations describing thermoacoustic amplification and unsteady heat transfer. In this model, the assumption of a one-dimensional and exponential temperature profile is retained and the equations describing heat transfer through the thermoacoustic core are substantially simplified into a set of ordinary differential equations. These equations include the description of two processes saturating wave amplitude growth, i.e. thermoacoustic heat pumping and heat convection by acoustic streaming. It is notably shown that accounting for the effect of acoustic streaming allows to reproduce qualitatively the overshoot process.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2012.06.015</identifier><identifier>CODEN: IJHMAK</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Acoustic streaming ; Acoustics ; Aeroacoustics, atmospheric sound ; Amplitudes ; Applied sciences ; Energy ; Energy. Thermal use of fuels ; Engines ; Engines and turbines ; Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc ; Exact sciences and technology ; Fundamental areas of phenomenology (including applications) ; Heat transfer ; Mathematical analysis ; Mathematical models ; Mechanics ; Physics ; Sound ; Stabilization ; Thermoacoustics</subject><ispartof>International journal of heat and mass transfer, 2012-10, Vol.55 (21-22), p.6042-6053</ispartof><rights>2012 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c497t-6273e28d30f6e295eabd99ffc81532255027e66dd435be251d15daf134aeacae3</citedby><cites>FETCH-LOGICAL-c497t-6273e28d30f6e295eabd99ffc81532255027e66dd435be251d15daf134aeacae3</cites><orcidid>0000-0002-2394-7892 ; 0000-0002-1524-0643 ; 0000-0003-1916-776X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.06.015$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26234387$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://univ-lemans.hal.science/hal-02057399$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Penelet, Guillaume</creatorcontrib><creatorcontrib>Guedra, Matthieu</creatorcontrib><creatorcontrib>Gusev, Vitalyi</creatorcontrib><creatorcontrib>Devaux, Thibaut</creatorcontrib><title>Simplified account of Rayleigh streaming for the description of nonlinear processes leading to steady state sound in thermoacoustic engines</title><title>International journal of heat and mass transfer</title><description>This paper focuses on the transient regime of wave amplitude growth and stabilization occuring in a standing wave thermoacoustic engine. Experiments are performed on a simple apparatus consisting of an open ended thermoacoustic oscillator with atmospheric air as working fluid. The results show that, even in that simple device, the transient regime leading to steady state sound exhibits complicated dynamics, like the systematic overshoot of wave amplitude before its final stabilization, and the spontaneous and periodic switch on/off of the thermoacoustic instability at constant heat power supply. A simplified model is then presented which describes wave amplitude growth from the coupled equations describing thermoacoustic amplification and unsteady heat transfer. In this model, the assumption of a one-dimensional and exponential temperature profile is retained and the equations describing heat transfer through the thermoacoustic core are substantially simplified into a set of ordinary differential equations. These equations include the description of two processes saturating wave amplitude growth, i.e. thermoacoustic heat pumping and heat convection by acoustic streaming. It is notably shown that accounting for the effect of acoustic streaming allows to reproduce qualitatively the overshoot process.</description><subject>Acoustic streaming</subject><subject>Acoustics</subject><subject>Aeroacoustics, atmospheric sound</subject><subject>Amplitudes</subject><subject>Applied sciences</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Engines</subject><subject>Engines and turbines</subject><subject>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</subject><subject>Exact sciences and technology</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Heat transfer</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mechanics</subject><subject>Physics</subject><subject>Sound</subject><subject>Stabilization</subject><subject>Thermoacoustics</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNkcluFDEQhlsIJIbAO_iCFA7d8dLrjSgCQjQSEsvZqtjlGY-67cHlRJpn4KVxa6JcuHDyoq--suuvqkvBG8FFf3Vo_GGPkBcgygkCOUyN5EI2vG-46F5UGzEOUy3FOL2sNpyLoZ6U4K-rN0SH9cjbflP9-eGX4-ydR8vAmPgQMouOfYfTjH63Z8WNsPiwYy4mlvfILJJJ_ph9DCsZYph9QEjsmKJBIiQ2I9i1JMdSX_anskBGRkVvmQ-rJy0RSjvK3jAMu6Kgt9UrBzPhu6f1ovr1-dPPm9t6--3L15vrbW3aach1LweFcrSKux7l1CHc22lyzoyiU1J2HZcD9r21reruUXbCis6CE6oFBAOoLqoPZ-8eZn1MfoF00hG8vr3e6vWOS94NapoeRWEvz2z53e8HpKwXTwbnGQKW12vBRynFUIZZ0I9n1KRIlNA9uwXXa2b6oP_NTK-Zad7rkllRvH_qBmRgdoUxnp49speqVeNQuLszh2VMj75YyHgMBq1PaLK20f9_079iGLzE</recordid><startdate>20121001</startdate><enddate>20121001</enddate><creator>Penelet, Guillaume</creator><creator>Guedra, Matthieu</creator><creator>Gusev, Vitalyi</creator><creator>Devaux, Thibaut</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-2394-7892</orcidid><orcidid>https://orcid.org/0000-0002-1524-0643</orcidid><orcidid>https://orcid.org/0000-0003-1916-776X</orcidid></search><sort><creationdate>20121001</creationdate><title>Simplified account of Rayleigh streaming for the description of nonlinear processes leading to steady state sound in thermoacoustic engines</title><author>Penelet, Guillaume ; Guedra, Matthieu ; Gusev, Vitalyi ; Devaux, Thibaut</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c497t-6273e28d30f6e295eabd99ffc81532255027e66dd435be251d15daf134aeacae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Acoustic streaming</topic><topic>Acoustics</topic><topic>Aeroacoustics, atmospheric sound</topic><topic>Amplitudes</topic><topic>Applied sciences</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Engines</topic><topic>Engines and turbines</topic><topic>Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc</topic><topic>Exact sciences and technology</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Heat transfer</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mechanics</topic><topic>Physics</topic><topic>Sound</topic><topic>Stabilization</topic><topic>Thermoacoustics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Penelet, Guillaume</creatorcontrib><creatorcontrib>Guedra, Matthieu</creatorcontrib><creatorcontrib>Gusev, Vitalyi</creatorcontrib><creatorcontrib>Devaux, Thibaut</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Penelet, Guillaume</au><au>Guedra, Matthieu</au><au>Gusev, Vitalyi</au><au>Devaux, Thibaut</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Simplified account of Rayleigh streaming for the description of nonlinear processes leading to steady state sound in thermoacoustic engines</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2012-10-01</date><risdate>2012</risdate><volume>55</volume><issue>21-22</issue><spage>6042</spage><epage>6053</epage><pages>6042-6053</pages><issn>0017-9310</issn><eissn>1879-2189</eissn><coden>IJHMAK</coden><abstract>This paper focuses on the transient regime of wave amplitude growth and stabilization occuring in a standing wave thermoacoustic engine. Experiments are performed on a simple apparatus consisting of an open ended thermoacoustic oscillator with atmospheric air as working fluid. The results show that, even in that simple device, the transient regime leading to steady state sound exhibits complicated dynamics, like the systematic overshoot of wave amplitude before its final stabilization, and the spontaneous and periodic switch on/off of the thermoacoustic instability at constant heat power supply. A simplified model is then presented which describes wave amplitude growth from the coupled equations describing thermoacoustic amplification and unsteady heat transfer. In this model, the assumption of a one-dimensional and exponential temperature profile is retained and the equations describing heat transfer through the thermoacoustic core are substantially simplified into a set of ordinary differential equations. These equations include the description of two processes saturating wave amplitude growth, i.e. thermoacoustic heat pumping and heat convection by acoustic streaming. It is notably shown that accounting for the effect of acoustic streaming allows to reproduce qualitatively the overshoot process.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2012.06.015</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2394-7892</orcidid><orcidid>https://orcid.org/0000-0002-1524-0643</orcidid><orcidid>https://orcid.org/0000-0003-1916-776X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0017-9310 |
ispartof | International journal of heat and mass transfer, 2012-10, Vol.55 (21-22), p.6042-6053 |
issn | 0017-9310 1879-2189 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02057399v1 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Acoustic streaming Acoustics Aeroacoustics, atmospheric sound Amplitudes Applied sciences Energy Energy. Thermal use of fuels Engines Engines and turbines Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc Exact sciences and technology Fundamental areas of phenomenology (including applications) Heat transfer Mathematical analysis Mathematical models Mechanics Physics Sound Stabilization Thermoacoustics |
title | Simplified account of Rayleigh streaming for the description of nonlinear processes leading to steady state sound in thermoacoustic engines |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T22%3A54%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Simplified%20account%20of%20Rayleigh%20streaming%20for%20the%20description%20of%20nonlinear%20processes%20leading%20to%20steady%20state%20sound%20in%20thermoacoustic%20engines&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Penelet,%20Guillaume&rft.date=2012-10-01&rft.volume=55&rft.issue=21-22&rft.spage=6042&rft.epage=6053&rft.pages=6042-6053&rft.issn=0017-9310&rft.eissn=1879-2189&rft.coden=IJHMAK&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2012.06.015&rft_dat=%3Cproquest_hal_p%3E1082217704%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082217704&rft_id=info:pmid/&rft_els_id=S0017931012004358&rfr_iscdi=true |