Constructal design of thermochemical energy storage

•The Constructal law is applied to thermochemical energy storage design.•Equipartition of imperfections leads to several layers of reacting salt.•The best design meets overall performance and compactness objectives. This paper documents an analytical and numerical study of thermochemical energy stor...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of heat and mass transfer 2019-03, Vol.130, p.1299-1306
Hauptverfasser: Malley-Ernewein, Alexandre, Lorente, Sylvie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1306
container_issue
container_start_page 1299
container_title International journal of heat and mass transfer
container_volume 130
creator Malley-Ernewein, Alexandre
Lorente, Sylvie
description •The Constructal law is applied to thermochemical energy storage design.•Equipartition of imperfections leads to several layers of reacting salt.•The best design meets overall performance and compactness objectives. This paper documents an analytical and numerical study of thermochemical energy storage in an open reactor. The analysis of the pressure losses and temperature distributions allows to predict what the geometrical features of the reactor should be. A numerical model simulating the thermochemical process is then presented and validated. In accord with the Constructal design methodology, the module configuration is morphed following the trends obtained in the analytical part, to head for better overall performances. The results show that the ratio between the heat produced by the chemical reaction within the entire module and the overall pumping power necessary to blow the fluid through the module increases as the imperfections reach equipartition. In terms of module configuration, this means (i) an increase in the number of salt layers and (ii) aspect ratios moving the module volume towards more compactness.
doi_str_mv 10.1016/j.ijheatmasstransfer.2018.10.097
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02056376v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931018320970</els_id><sourcerecordid>2173844264</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-701c4a7e1f967fb5418d9b368c3e0c0140b566734c2ee87433d7003ab334c7963</originalsourceid><addsrcrecordid>eNqNkEFLwzAYhoMoOKf_YeBFD61fmixpb46hThl40XNI069bytbMJBvs35sy8eLFU8j3Pnn48hJyRyGnQMVDl9tujTpudQjR6z606PMCaJniHCp5Rka0lFVW0LI6JyMAKrOKUbgkVyF0wxW4GBE2d316vzdRbyYNBrvqJ66dxDX6rTNr3FqTAuzRr46TEJ3XK7wmF63eBLz5Ocfk8_npY77Ilu8vr_PZMjMceMwkUMO1RNpWQrb1lNOyqWomSsMQDFAO9VQIybgpEEvJGWskANM1SyNZCTYm9yfvWm_Uztut9kfltFWL2VINMyhgKpgUB5rY2xO78-5rjyGqzu19n9ZTBZWs5LwQPFGPJ8p4F4LH9ldLQQ21qk79rVUNtQ5EqjUp3k4KTD8_2JQGY7E32FiPJqrG2f_LvgExB4tf</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2173844264</pqid></control><display><type>article</type><title>Constructal design of thermochemical energy storage</title><source>Elsevier ScienceDirect Journals</source><creator>Malley-Ernewein, Alexandre ; Lorente, Sylvie</creator><creatorcontrib>Malley-Ernewein, Alexandre ; Lorente, Sylvie</creatorcontrib><description>•The Constructal law is applied to thermochemical energy storage design.•Equipartition of imperfections leads to several layers of reacting salt.•The best design meets overall performance and compactness objectives. This paper documents an analytical and numerical study of thermochemical energy storage in an open reactor. The analysis of the pressure losses and temperature distributions allows to predict what the geometrical features of the reactor should be. A numerical model simulating the thermochemical process is then presented and validated. In accord with the Constructal design methodology, the module configuration is morphed following the trends obtained in the analytical part, to head for better overall performances. The results show that the ratio between the heat produced by the chemical reaction within the entire module and the overall pumping power necessary to blow the fluid through the module increases as the imperfections reach equipartition. In terms of module configuration, this means (i) an increase in the number of salt layers and (ii) aspect ratios moving the module volume towards more compactness.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2018.10.097</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Aspect ratio ; Chemical reactions ; Compactness ; Computer simulation ; Configuration management ; Configurations ; Constructal design ; Energy management ; Energy storage ; Mathematical models ; Mechanics ; Modules ; Numerical analysis ; Organic chemistry ; Physics ; Pressure ; Pressure loss ; Reactors ; Temperature distribution ; Thermal energy ; Thermics ; Thermochemical energy storage</subject><ispartof>International journal of heat and mass transfer, 2019-03, Vol.130, p.1299-1306</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Mar 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-701c4a7e1f967fb5418d9b368c3e0c0140b566734c2ee87433d7003ab334c7963</citedby><cites>FETCH-LOGICAL-c404t-701c4a7e1f967fb5418d9b368c3e0c0140b566734c2ee87433d7003ab334c7963</cites><orcidid>0000-0002-8773-4861</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijheatmasstransfer.2018.10.097$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,777,781,882,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttps://insa-toulouse.hal.science/hal-02056376$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Malley-Ernewein, Alexandre</creatorcontrib><creatorcontrib>Lorente, Sylvie</creatorcontrib><title>Constructal design of thermochemical energy storage</title><title>International journal of heat and mass transfer</title><description>•The Constructal law is applied to thermochemical energy storage design.•Equipartition of imperfections leads to several layers of reacting salt.•The best design meets overall performance and compactness objectives. This paper documents an analytical and numerical study of thermochemical energy storage in an open reactor. The analysis of the pressure losses and temperature distributions allows to predict what the geometrical features of the reactor should be. A numerical model simulating the thermochemical process is then presented and validated. In accord with the Constructal design methodology, the module configuration is morphed following the trends obtained in the analytical part, to head for better overall performances. The results show that the ratio between the heat produced by the chemical reaction within the entire module and the overall pumping power necessary to blow the fluid through the module increases as the imperfections reach equipartition. In terms of module configuration, this means (i) an increase in the number of salt layers and (ii) aspect ratios moving the module volume towards more compactness.</description><subject>Aspect ratio</subject><subject>Chemical reactions</subject><subject>Compactness</subject><subject>Computer simulation</subject><subject>Configuration management</subject><subject>Configurations</subject><subject>Constructal design</subject><subject>Energy management</subject><subject>Energy storage</subject><subject>Mathematical models</subject><subject>Mechanics</subject><subject>Modules</subject><subject>Numerical analysis</subject><subject>Organic chemistry</subject><subject>Physics</subject><subject>Pressure</subject><subject>Pressure loss</subject><subject>Reactors</subject><subject>Temperature distribution</subject><subject>Thermal energy</subject><subject>Thermics</subject><subject>Thermochemical energy storage</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNkEFLwzAYhoMoOKf_YeBFD61fmixpb46hThl40XNI069bytbMJBvs35sy8eLFU8j3Pnn48hJyRyGnQMVDl9tujTpudQjR6z606PMCaJniHCp5Rka0lFVW0LI6JyMAKrOKUbgkVyF0wxW4GBE2d316vzdRbyYNBrvqJ66dxDX6rTNr3FqTAuzRr46TEJ3XK7wmF63eBLz5Ocfk8_npY77Ilu8vr_PZMjMceMwkUMO1RNpWQrb1lNOyqWomSsMQDFAO9VQIybgpEEvJGWskANM1SyNZCTYm9yfvWm_Uztut9kfltFWL2VINMyhgKpgUB5rY2xO78-5rjyGqzu19n9ZTBZWs5LwQPFGPJ8p4F4LH9ldLQQ21qk79rVUNtQ5EqjUp3k4KTD8_2JQGY7E32FiPJqrG2f_LvgExB4tf</recordid><startdate>201903</startdate><enddate>201903</enddate><creator>Malley-Ernewein, Alexandre</creator><creator>Lorente, Sylvie</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-8773-4861</orcidid></search><sort><creationdate>201903</creationdate><title>Constructal design of thermochemical energy storage</title><author>Malley-Ernewein, Alexandre ; Lorente, Sylvie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-701c4a7e1f967fb5418d9b368c3e0c0140b566734c2ee87433d7003ab334c7963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aspect ratio</topic><topic>Chemical reactions</topic><topic>Compactness</topic><topic>Computer simulation</topic><topic>Configuration management</topic><topic>Configurations</topic><topic>Constructal design</topic><topic>Energy management</topic><topic>Energy storage</topic><topic>Mathematical models</topic><topic>Mechanics</topic><topic>Modules</topic><topic>Numerical analysis</topic><topic>Organic chemistry</topic><topic>Physics</topic><topic>Pressure</topic><topic>Pressure loss</topic><topic>Reactors</topic><topic>Temperature distribution</topic><topic>Thermal energy</topic><topic>Thermics</topic><topic>Thermochemical energy storage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Malley-Ernewein, Alexandre</creatorcontrib><creatorcontrib>Lorente, Sylvie</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Malley-Ernewein, Alexandre</au><au>Lorente, Sylvie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constructal design of thermochemical energy storage</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2019-03</date><risdate>2019</risdate><volume>130</volume><spage>1299</spage><epage>1306</epage><pages>1299-1306</pages><issn>0017-9310</issn><eissn>1879-2189</eissn><abstract>•The Constructal law is applied to thermochemical energy storage design.•Equipartition of imperfections leads to several layers of reacting salt.•The best design meets overall performance and compactness objectives. This paper documents an analytical and numerical study of thermochemical energy storage in an open reactor. The analysis of the pressure losses and temperature distributions allows to predict what the geometrical features of the reactor should be. A numerical model simulating the thermochemical process is then presented and validated. In accord with the Constructal design methodology, the module configuration is morphed following the trends obtained in the analytical part, to head for better overall performances. The results show that the ratio between the heat produced by the chemical reaction within the entire module and the overall pumping power necessary to blow the fluid through the module increases as the imperfections reach equipartition. In terms of module configuration, this means (i) an increase in the number of salt layers and (ii) aspect ratios moving the module volume towards more compactness.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2018.10.097</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8773-4861</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0017-9310
ispartof International journal of heat and mass transfer, 2019-03, Vol.130, p.1299-1306
issn 0017-9310
1879-2189
language eng
recordid cdi_hal_primary_oai_HAL_hal_02056376v1
source Elsevier ScienceDirect Journals
subjects Aspect ratio
Chemical reactions
Compactness
Computer simulation
Configuration management
Configurations
Constructal design
Energy management
Energy storage
Mathematical models
Mechanics
Modules
Numerical analysis
Organic chemistry
Physics
Pressure
Pressure loss
Reactors
Temperature distribution
Thermal energy
Thermics
Thermochemical energy storage
title Constructal design of thermochemical energy storage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T13%3A16%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constructal%20design%20of%20thermochemical%20energy%20storage&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Malley-Ernewein,%20Alexandre&rft.date=2019-03&rft.volume=130&rft.spage=1299&rft.epage=1306&rft.pages=1299-1306&rft.issn=0017-9310&rft.eissn=1879-2189&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2018.10.097&rft_dat=%3Cproquest_hal_p%3E2173844264%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2173844264&rft_id=info:pmid/&rft_els_id=S0017931018320970&rfr_iscdi=true