Constructal design of thermochemical energy storage
•The Constructal law is applied to thermochemical energy storage design.•Equipartition of imperfections leads to several layers of reacting salt.•The best design meets overall performance and compactness objectives. This paper documents an analytical and numerical study of thermochemical energy stor...
Gespeichert in:
Veröffentlicht in: | International journal of heat and mass transfer 2019-03, Vol.130, p.1299-1306 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1306 |
---|---|
container_issue | |
container_start_page | 1299 |
container_title | International journal of heat and mass transfer |
container_volume | 130 |
creator | Malley-Ernewein, Alexandre Lorente, Sylvie |
description | •The Constructal law is applied to thermochemical energy storage design.•Equipartition of imperfections leads to several layers of reacting salt.•The best design meets overall performance and compactness objectives.
This paper documents an analytical and numerical study of thermochemical energy storage in an open reactor. The analysis of the pressure losses and temperature distributions allows to predict what the geometrical features of the reactor should be. A numerical model simulating the thermochemical process is then presented and validated. In accord with the Constructal design methodology, the module configuration is morphed following the trends obtained in the analytical part, to head for better overall performances. The results show that the ratio between the heat produced by the chemical reaction within the entire module and the overall pumping power necessary to blow the fluid through the module increases as the imperfections reach equipartition. In terms of module configuration, this means (i) an increase in the number of salt layers and (ii) aspect ratios moving the module volume towards more compactness. |
doi_str_mv | 10.1016/j.ijheatmasstransfer.2018.10.097 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02056376v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931018320970</els_id><sourcerecordid>2173844264</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-701c4a7e1f967fb5418d9b368c3e0c0140b566734c2ee87433d7003ab334c7963</originalsourceid><addsrcrecordid>eNqNkEFLwzAYhoMoOKf_YeBFD61fmixpb46hThl40XNI069bytbMJBvs35sy8eLFU8j3Pnn48hJyRyGnQMVDl9tujTpudQjR6z606PMCaJniHCp5Rka0lFVW0LI6JyMAKrOKUbgkVyF0wxW4GBE2d316vzdRbyYNBrvqJ66dxDX6rTNr3FqTAuzRr46TEJ3XK7wmF63eBLz5Ocfk8_npY77Ilu8vr_PZMjMceMwkUMO1RNpWQrb1lNOyqWomSsMQDFAO9VQIybgpEEvJGWskANM1SyNZCTYm9yfvWm_Uztut9kfltFWL2VINMyhgKpgUB5rY2xO78-5rjyGqzu19n9ZTBZWs5LwQPFGPJ8p4F4LH9ldLQQ21qk79rVUNtQ5EqjUp3k4KTD8_2JQGY7E32FiPJqrG2f_LvgExB4tf</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2173844264</pqid></control><display><type>article</type><title>Constructal design of thermochemical energy storage</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Malley-Ernewein, Alexandre ; Lorente, Sylvie</creator><creatorcontrib>Malley-Ernewein, Alexandre ; Lorente, Sylvie</creatorcontrib><description>•The Constructal law is applied to thermochemical energy storage design.•Equipartition of imperfections leads to several layers of reacting salt.•The best design meets overall performance and compactness objectives.
This paper documents an analytical and numerical study of thermochemical energy storage in an open reactor. The analysis of the pressure losses and temperature distributions allows to predict what the geometrical features of the reactor should be. A numerical model simulating the thermochemical process is then presented and validated. In accord with the Constructal design methodology, the module configuration is morphed following the trends obtained in the analytical part, to head for better overall performances. The results show that the ratio between the heat produced by the chemical reaction within the entire module and the overall pumping power necessary to blow the fluid through the module increases as the imperfections reach equipartition. In terms of module configuration, this means (i) an increase in the number of salt layers and (ii) aspect ratios moving the module volume towards more compactness.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2018.10.097</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Aspect ratio ; Chemical reactions ; Compactness ; Computer simulation ; Configuration management ; Configurations ; Constructal design ; Energy management ; Energy storage ; Mathematical models ; Mechanics ; Modules ; Numerical analysis ; Organic chemistry ; Physics ; Pressure ; Pressure loss ; Reactors ; Temperature distribution ; Thermal energy ; Thermics ; Thermochemical energy storage</subject><ispartof>International journal of heat and mass transfer, 2019-03, Vol.130, p.1299-1306</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Mar 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-701c4a7e1f967fb5418d9b368c3e0c0140b566734c2ee87433d7003ab334c7963</citedby><cites>FETCH-LOGICAL-c404t-701c4a7e1f967fb5418d9b368c3e0c0140b566734c2ee87433d7003ab334c7963</cites><orcidid>0000-0002-8773-4861</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijheatmasstransfer.2018.10.097$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,315,781,785,886,3551,27929,27930,46000</link.rule.ids><backlink>$$Uhttps://insa-toulouse.hal.science/hal-02056376$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Malley-Ernewein, Alexandre</creatorcontrib><creatorcontrib>Lorente, Sylvie</creatorcontrib><title>Constructal design of thermochemical energy storage</title><title>International journal of heat and mass transfer</title><description>•The Constructal law is applied to thermochemical energy storage design.•Equipartition of imperfections leads to several layers of reacting salt.•The best design meets overall performance and compactness objectives.
This paper documents an analytical and numerical study of thermochemical energy storage in an open reactor. The analysis of the pressure losses and temperature distributions allows to predict what the geometrical features of the reactor should be. A numerical model simulating the thermochemical process is then presented and validated. In accord with the Constructal design methodology, the module configuration is morphed following the trends obtained in the analytical part, to head for better overall performances. The results show that the ratio between the heat produced by the chemical reaction within the entire module and the overall pumping power necessary to blow the fluid through the module increases as the imperfections reach equipartition. In terms of module configuration, this means (i) an increase in the number of salt layers and (ii) aspect ratios moving the module volume towards more compactness.</description><subject>Aspect ratio</subject><subject>Chemical reactions</subject><subject>Compactness</subject><subject>Computer simulation</subject><subject>Configuration management</subject><subject>Configurations</subject><subject>Constructal design</subject><subject>Energy management</subject><subject>Energy storage</subject><subject>Mathematical models</subject><subject>Mechanics</subject><subject>Modules</subject><subject>Numerical analysis</subject><subject>Organic chemistry</subject><subject>Physics</subject><subject>Pressure</subject><subject>Pressure loss</subject><subject>Reactors</subject><subject>Temperature distribution</subject><subject>Thermal energy</subject><subject>Thermics</subject><subject>Thermochemical energy storage</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNkEFLwzAYhoMoOKf_YeBFD61fmixpb46hThl40XNI069bytbMJBvs35sy8eLFU8j3Pnn48hJyRyGnQMVDl9tujTpudQjR6z606PMCaJniHCp5Rka0lFVW0LI6JyMAKrOKUbgkVyF0wxW4GBE2d316vzdRbyYNBrvqJ66dxDX6rTNr3FqTAuzRr46TEJ3XK7wmF63eBLz5Ocfk8_npY77Ilu8vr_PZMjMceMwkUMO1RNpWQrb1lNOyqWomSsMQDFAO9VQIybgpEEvJGWskANM1SyNZCTYm9yfvWm_Uztut9kfltFWL2VINMyhgKpgUB5rY2xO78-5rjyGqzu19n9ZTBZWs5LwQPFGPJ8p4F4LH9ldLQQ21qk79rVUNtQ5EqjUp3k4KTD8_2JQGY7E32FiPJqrG2f_LvgExB4tf</recordid><startdate>201903</startdate><enddate>201903</enddate><creator>Malley-Ernewein, Alexandre</creator><creator>Lorente, Sylvie</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-8773-4861</orcidid></search><sort><creationdate>201903</creationdate><title>Constructal design of thermochemical energy storage</title><author>Malley-Ernewein, Alexandre ; Lorente, Sylvie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-701c4a7e1f967fb5418d9b368c3e0c0140b566734c2ee87433d7003ab334c7963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aspect ratio</topic><topic>Chemical reactions</topic><topic>Compactness</topic><topic>Computer simulation</topic><topic>Configuration management</topic><topic>Configurations</topic><topic>Constructal design</topic><topic>Energy management</topic><topic>Energy storage</topic><topic>Mathematical models</topic><topic>Mechanics</topic><topic>Modules</topic><topic>Numerical analysis</topic><topic>Organic chemistry</topic><topic>Physics</topic><topic>Pressure</topic><topic>Pressure loss</topic><topic>Reactors</topic><topic>Temperature distribution</topic><topic>Thermal energy</topic><topic>Thermics</topic><topic>Thermochemical energy storage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Malley-Ernewein, Alexandre</creatorcontrib><creatorcontrib>Lorente, Sylvie</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Malley-Ernewein, Alexandre</au><au>Lorente, Sylvie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Constructal design of thermochemical energy storage</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2019-03</date><risdate>2019</risdate><volume>130</volume><spage>1299</spage><epage>1306</epage><pages>1299-1306</pages><issn>0017-9310</issn><eissn>1879-2189</eissn><abstract>•The Constructal law is applied to thermochemical energy storage design.•Equipartition of imperfections leads to several layers of reacting salt.•The best design meets overall performance and compactness objectives.
This paper documents an analytical and numerical study of thermochemical energy storage in an open reactor. The analysis of the pressure losses and temperature distributions allows to predict what the geometrical features of the reactor should be. A numerical model simulating the thermochemical process is then presented and validated. In accord with the Constructal design methodology, the module configuration is morphed following the trends obtained in the analytical part, to head for better overall performances. The results show that the ratio between the heat produced by the chemical reaction within the entire module and the overall pumping power necessary to blow the fluid through the module increases as the imperfections reach equipartition. In terms of module configuration, this means (i) an increase in the number of salt layers and (ii) aspect ratios moving the module volume towards more compactness.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2018.10.097</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-8773-4861</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0017-9310 |
ispartof | International journal of heat and mass transfer, 2019-03, Vol.130, p.1299-1306 |
issn | 0017-9310 1879-2189 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02056376v1 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Aspect ratio Chemical reactions Compactness Computer simulation Configuration management Configurations Constructal design Energy management Energy storage Mathematical models Mechanics Modules Numerical analysis Organic chemistry Physics Pressure Pressure loss Reactors Temperature distribution Thermal energy Thermics Thermochemical energy storage |
title | Constructal design of thermochemical energy storage |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T09%3A15%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Constructal%20design%20of%20thermochemical%20energy%20storage&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Malley-Ernewein,%20Alexandre&rft.date=2019-03&rft.volume=130&rft.spage=1299&rft.epage=1306&rft.pages=1299-1306&rft.issn=0017-9310&rft.eissn=1879-2189&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2018.10.097&rft_dat=%3Cproquest_hal_p%3E2173844264%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2173844264&rft_id=info:pmid/&rft_els_id=S0017931018320970&rfr_iscdi=true |