Pinch-off mechanism for Taylor bubble formation in a microfluidic flow-focusing device
The present work aims at studying the nonlinear breakup mechanism for Taylor bubble formation in a microfluidic flow-focusing device by using a high-speed digital camera. Experiments were carried out in a square microchannel with cross section of 600 × 600 μm. During the nonlinear collapse process,...
Gespeichert in:
Veröffentlicht in: | Microfluidics and nanofluidics 2014-06, Vol.16 (6), p.1047-1055 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1055 |
---|---|
container_issue | 6 |
container_start_page | 1047 |
container_title | Microfluidics and nanofluidics |
container_volume | 16 |
creator | Lu, Yutao Fu, Taotao Zhu, Chunying Ma, Youguang Li, Huai Z. |
description | The present work aims at studying the nonlinear breakup mechanism for Taylor bubble formation in a microfluidic flow-focusing device by using a high-speed digital camera. Experiments were carried out in a square microchannel with cross section of 600 × 600 μm. During the nonlinear collapse process, the variation of the minimum radius of bubble neck (
r
0
) with the remaining time until pinch-off (
τ
) can be scaled by a power–law relationship:
r
0
∝
τ
α
.
Due to the interface rearrangement around the neck, the nonlinear collapse process can be divided into two distinct stages: liquid squeezing collapse stage and free pinch-off stage. In the liquid squeezing collapse stage, the neck collapses under the constriction of the liquid flow and the exponent
α
approaches to 0.33 with the increase in the liquid flow rate
Q
l
. In the free pinch-off stage, the value of
α
is close to the theoretical value of 0.50 derived from the Rayleigh–Plesset equation and is independent of
Q
l
. |
doi_str_mv | 10.1007/s10404-013-1274-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02049935v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3357648831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-4d092aaea36357531ace46f508f907b44cf40496491e7ef8bbf33933f76c3fda3</originalsourceid><addsrcrecordid>eNp1kDFPwzAQhSMEEqXwA9giIQaGwDl24nisKqBIlWAorJbj2K2rJC52U9p_j6NUFQvT2XffPd17UXSL4BEB0CePgABJAOEEpZQk-7NohPLwI4zB-eldpJfRlfdrAEJTBKPo68O0cpVYreNGyZVojW9ibV28EIc6lLIry1r1nUZsjW1j08Yibox0VtedqYyMdW1_Em1l5027jCu1M1JdRxda1F7dHOs4-nx5Xkxnyfz99W06mSeSZLBNSAUsFUIJnOOMZhgJqUiuMyg0A1oSInVwxXLCkKJKF2WpMWYYa5pLrCuBx9HDoLsSNd840wh34FYYPpvMed-DNOwznO1QYO8GduPsd6f8lq9t59pwHkcZQTSlqIBAoYEKDr13Sp9kEfA-aj5EzUPUvI-a78PO_VFZeClq7UQrjT8tpkXwRos8cOnA-TBql8r9ueBf8V_YsY2Z</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1541727180</pqid></control><display><type>article</type><title>Pinch-off mechanism for Taylor bubble formation in a microfluidic flow-focusing device</title><source>SpringerNature Journals</source><creator>Lu, Yutao ; Fu, Taotao ; Zhu, Chunying ; Ma, Youguang ; Li, Huai Z.</creator><creatorcontrib>Lu, Yutao ; Fu, Taotao ; Zhu, Chunying ; Ma, Youguang ; Li, Huai Z.</creatorcontrib><description>The present work aims at studying the nonlinear breakup mechanism for Taylor bubble formation in a microfluidic flow-focusing device by using a high-speed digital camera. Experiments were carried out in a square microchannel with cross section of 600 × 600 μm. During the nonlinear collapse process, the variation of the minimum radius of bubble neck (
r
0
) with the remaining time until pinch-off (
τ
) can be scaled by a power–law relationship:
r
0
∝
τ
α
.
Due to the interface rearrangement around the neck, the nonlinear collapse process can be divided into two distinct stages: liquid squeezing collapse stage and free pinch-off stage. In the liquid squeezing collapse stage, the neck collapses under the constriction of the liquid flow and the exponent
α
approaches to 0.33 with the increase in the liquid flow rate
Q
l
. In the free pinch-off stage, the value of
α
is close to the theoretical value of 0.50 derived from the Rayleigh–Plesset equation and is independent of
Q
l
.</description><identifier>ISSN: 1613-4982</identifier><identifier>EISSN: 1613-4990</identifier><identifier>DOI: 10.1007/s10404-013-1274-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analytical Chemistry ; Applied fluid mechanics ; Biomedical Engineering and Bioengineering ; Bubble barriers ; Chemical and Process Engineering ; Engineering ; Engineering Fluid Dynamics ; Engineering Sciences ; Exact sciences and technology ; Flow rates ; Fluid dynamics ; Fluidics ; Fluids mechanics ; Fundamental areas of phenomenology (including applications) ; Mechanics ; Multiphase and particle-laden flows ; Nanotechnology and Microengineering ; Nonhomogeneous flows ; Physics ; Research Paper</subject><ispartof>Microfluidics and nanofluidics, 2014-06, Vol.16 (6), p.1047-1055</ispartof><rights>Springer-Verlag Berlin Heidelberg 2013</rights><rights>2015 INIST-CNRS</rights><rights>Springer-Verlag Berlin Heidelberg 2014</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-4d092aaea36357531ace46f508f907b44cf40496491e7ef8bbf33933f76c3fda3</citedby><cites>FETCH-LOGICAL-c450t-4d092aaea36357531ace46f508f907b44cf40496491e7ef8bbf33933f76c3fda3</cites><orcidid>0000-0001-7129-6660 ; 0000-0002-3520-8392 ; 0000-0003-1881-1509</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10404-013-1274-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10404-013-1274-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28575786$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02049935$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Lu, Yutao</creatorcontrib><creatorcontrib>Fu, Taotao</creatorcontrib><creatorcontrib>Zhu, Chunying</creatorcontrib><creatorcontrib>Ma, Youguang</creatorcontrib><creatorcontrib>Li, Huai Z.</creatorcontrib><title>Pinch-off mechanism for Taylor bubble formation in a microfluidic flow-focusing device</title><title>Microfluidics and nanofluidics</title><addtitle>Microfluid Nanofluid</addtitle><description>The present work aims at studying the nonlinear breakup mechanism for Taylor bubble formation in a microfluidic flow-focusing device by using a high-speed digital camera. Experiments were carried out in a square microchannel with cross section of 600 × 600 μm. During the nonlinear collapse process, the variation of the minimum radius of bubble neck (
r
0
) with the remaining time until pinch-off (
τ
) can be scaled by a power–law relationship:
r
0
∝
τ
α
.
Due to the interface rearrangement around the neck, the nonlinear collapse process can be divided into two distinct stages: liquid squeezing collapse stage and free pinch-off stage. In the liquid squeezing collapse stage, the neck collapses under the constriction of the liquid flow and the exponent
α
approaches to 0.33 with the increase in the liquid flow rate
Q
l
. In the free pinch-off stage, the value of
α
is close to the theoretical value of 0.50 derived from the Rayleigh–Plesset equation and is independent of
Q
l
.</description><subject>Analytical Chemistry</subject><subject>Applied fluid mechanics</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Bubble barriers</subject><subject>Chemical and Process Engineering</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Sciences</subject><subject>Exact sciences and technology</subject><subject>Flow rates</subject><subject>Fluid dynamics</subject><subject>Fluidics</subject><subject>Fluids mechanics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Mechanics</subject><subject>Multiphase and particle-laden flows</subject><subject>Nanotechnology and Microengineering</subject><subject>Nonhomogeneous flows</subject><subject>Physics</subject><subject>Research Paper</subject><issn>1613-4982</issn><issn>1613-4990</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kDFPwzAQhSMEEqXwA9giIQaGwDl24nisKqBIlWAorJbj2K2rJC52U9p_j6NUFQvT2XffPd17UXSL4BEB0CePgABJAOEEpZQk-7NohPLwI4zB-eldpJfRlfdrAEJTBKPo68O0cpVYreNGyZVojW9ibV28EIc6lLIry1r1nUZsjW1j08Yibox0VtedqYyMdW1_Em1l5027jCu1M1JdRxda1F7dHOs4-nx5Xkxnyfz99W06mSeSZLBNSAUsFUIJnOOMZhgJqUiuMyg0A1oSInVwxXLCkKJKF2WpMWYYa5pLrCuBx9HDoLsSNd840wh34FYYPpvMed-DNOwznO1QYO8GduPsd6f8lq9t59pwHkcZQTSlqIBAoYEKDr13Sp9kEfA-aj5EzUPUvI-a78PO_VFZeClq7UQrjT8tpkXwRos8cOnA-TBql8r9ueBf8V_YsY2Z</recordid><startdate>20140601</startdate><enddate>20140601</enddate><creator>Lu, Yutao</creator><creator>Fu, Taotao</creator><creator>Zhu, Chunying</creator><creator>Ma, Youguang</creator><creator>Li, Huai Z.</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>L6V</scope><scope>M0S</scope><scope>M7S</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>S0W</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-7129-6660</orcidid><orcidid>https://orcid.org/0000-0002-3520-8392</orcidid><orcidid>https://orcid.org/0000-0003-1881-1509</orcidid></search><sort><creationdate>20140601</creationdate><title>Pinch-off mechanism for Taylor bubble formation in a microfluidic flow-focusing device</title><author>Lu, Yutao ; Fu, Taotao ; Zhu, Chunying ; Ma, Youguang ; Li, Huai Z.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-4d092aaea36357531ace46f508f907b44cf40496491e7ef8bbf33933f76c3fda3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Analytical Chemistry</topic><topic>Applied fluid mechanics</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Bubble barriers</topic><topic>Chemical and Process Engineering</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Sciences</topic><topic>Exact sciences and technology</topic><topic>Flow rates</topic><topic>Fluid dynamics</topic><topic>Fluidics</topic><topic>Fluids mechanics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Mechanics</topic><topic>Multiphase and particle-laden flows</topic><topic>Nanotechnology and Microengineering</topic><topic>Nonhomogeneous flows</topic><topic>Physics</topic><topic>Research Paper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lu, Yutao</creatorcontrib><creatorcontrib>Fu, Taotao</creatorcontrib><creatorcontrib>Zhu, Chunying</creatorcontrib><creatorcontrib>Ma, Youguang</creatorcontrib><creatorcontrib>Li, Huai Z.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>DELNET Engineering & Technology Collection</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Microfluidics and nanofluidics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lu, Yutao</au><au>Fu, Taotao</au><au>Zhu, Chunying</au><au>Ma, Youguang</au><au>Li, Huai Z.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pinch-off mechanism for Taylor bubble formation in a microfluidic flow-focusing device</atitle><jtitle>Microfluidics and nanofluidics</jtitle><stitle>Microfluid Nanofluid</stitle><date>2014-06-01</date><risdate>2014</risdate><volume>16</volume><issue>6</issue><spage>1047</spage><epage>1055</epage><pages>1047-1055</pages><issn>1613-4982</issn><eissn>1613-4990</eissn><abstract>The present work aims at studying the nonlinear breakup mechanism for Taylor bubble formation in a microfluidic flow-focusing device by using a high-speed digital camera. Experiments were carried out in a square microchannel with cross section of 600 × 600 μm. During the nonlinear collapse process, the variation of the minimum radius of bubble neck (
r
0
) with the remaining time until pinch-off (
τ
) can be scaled by a power–law relationship:
r
0
∝
τ
α
.
Due to the interface rearrangement around the neck, the nonlinear collapse process can be divided into two distinct stages: liquid squeezing collapse stage and free pinch-off stage. In the liquid squeezing collapse stage, the neck collapses under the constriction of the liquid flow and the exponent
α
approaches to 0.33 with the increase in the liquid flow rate
Q
l
. In the free pinch-off stage, the value of
α
is close to the theoretical value of 0.50 derived from the Rayleigh–Plesset equation and is independent of
Q
l
.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10404-013-1274-x</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-7129-6660</orcidid><orcidid>https://orcid.org/0000-0002-3520-8392</orcidid><orcidid>https://orcid.org/0000-0003-1881-1509</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-4982 |
ispartof | Microfluidics and nanofluidics, 2014-06, Vol.16 (6), p.1047-1055 |
issn | 1613-4982 1613-4990 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02049935v1 |
source | SpringerNature Journals |
subjects | Analytical Chemistry Applied fluid mechanics Biomedical Engineering and Bioengineering Bubble barriers Chemical and Process Engineering Engineering Engineering Fluid Dynamics Engineering Sciences Exact sciences and technology Flow rates Fluid dynamics Fluidics Fluids mechanics Fundamental areas of phenomenology (including applications) Mechanics Multiphase and particle-laden flows Nanotechnology and Microengineering Nonhomogeneous flows Physics Research Paper |
title | Pinch-off mechanism for Taylor bubble formation in a microfluidic flow-focusing device |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T10%3A42%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pinch-off%20mechanism%20for%20Taylor%20bubble%20formation%20in%20a%20microfluidic%20flow-focusing%20device&rft.jtitle=Microfluidics%20and%20nanofluidics&rft.au=Lu,%20Yutao&rft.date=2014-06-01&rft.volume=16&rft.issue=6&rft.spage=1047&rft.epage=1055&rft.pages=1047-1055&rft.issn=1613-4982&rft.eissn=1613-4990&rft_id=info:doi/10.1007/s10404-013-1274-x&rft_dat=%3Cproquest_hal_p%3E3357648831%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1541727180&rft_id=info:pmid/&rfr_iscdi=true |