Comparison of three labeled silica nanoparticles used as tracers in transport experiments in porous media. Part I: Syntheses and characterizations

The synthesis and the characterization of three kinds of labeled silica nanoparticles were performed. Three different labeling strategies were investigated: fluorescent organic molecule (FITC) embedded in silica matrix, heavy metal core (Ag(0)) and radioactive core (110mAg) surrounded by a silica sh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental pollution (1987) 2014-01, Vol.184, p.605-612
Hauptverfasser: Vitorge, Elsa, Szenknect, Stéphanie, Martins, Jean M.F., Barthès, Véronique, Auger, Aurélien, Renard, Oliver, Gaudet, Jean-Paul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 612
container_issue
container_start_page 605
container_title Environmental pollution (1987)
container_volume 184
creator Vitorge, Elsa
Szenknect, Stéphanie
Martins, Jean M.F.
Barthès, Véronique
Auger, Aurélien
Renard, Oliver
Gaudet, Jean-Paul
description The synthesis and the characterization of three kinds of labeled silica nanoparticles were performed. Three different labeling strategies were investigated: fluorescent organic molecule (FITC) embedded in silica matrix, heavy metal core (Ag(0)) and radioactive core (110mAg) surrounded by a silica shell. The main properties and the suitability of each kind of labeled nanoparticle in terms of size, surface properties, stability, detection limits, and cost were determined and compared regarding its use for transport studies. Fluorescent labeling was found the most convenient and the cheapest, but the best detection limits were reached with chemical (Ag(0)) and radio-labeled (110mAg) nanoparticles, which also allowed nondestructive quantifications. This work showed that the choice of labeled nanoparticles as surrogates of natural colloids or manufactured nanoparticles strongly depends on the experimental conditions, especially the concentration and amount required, the composition of the effluent, and the timescale of the experiment. [Display omitted] •Labeled silica nanotracers were synthesized using the sol–gel method.•The nanotracers were detectable by fluorescence, analytical chemistry or radioactivity measurement.•The nanotracers were characterized regarding their size, surface properties, stability, and detection limits.•The suitability of these nanotracers was evaluated in experiments dealing with colloid transport in natural porous media. How to synthesize and choose suitable tracers for engineered silica nanoparticles or natural colloids?
doi_str_mv 10.1016/j.envpol.2013.07.031
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02048829v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0269749113004004</els_id><sourcerecordid>1461884871</sourcerecordid><originalsourceid>FETCH-LOGICAL-c558t-ba9912a3eeebd6eb2edddc8dab183d72be6ee90c6b210d6d0941f5bb71124b133</originalsourceid><addsrcrecordid>eNqNks1uEzEUhUcIREPhDRDyBgkWGfw3todFpSoqtFIkkIC15bFvFEcTe7CdiPIYPHGdJpQdsLLl-93rY5_TNC8Jbgkm4t2mhbCf4thSTFiLZYsZedTMiJJsLjjlj5sZpqKfS96Ts-ZZzhuMMWeMPW3OKOu5ooLMml-LuJ1M8jkGFFeorBMAGs0AIziU_eitQcGEWJni7QgZ7XKtmIxKMhZSRj4ctiFPMRUEPyZIfguh3BfqWdxltAXnTYs-1xno5j36chvKGnKdZYJDdm3qpFLbfpriY8jPmycrM2Z4cVrPm28frr4urufLTx9vFpfLue06VeaD6XtCDQOAwQkYKDjnrHJmIIo5SQcQAD22YqAEO-Fwz8mqGwZJCOUDYey8eXucuzajnqpqk251NF5fXy714QxTzJWi_Z5U9s2RnVL8voNc9NZnC-NoAtQXaiJUJxWXXP4HKgXrSMfFv1EuiFJcyYMAfkRtijknWD0oJlgf8qA3-pgHfciDxlLXPNS2V6cbdkN14aHpdwAq8PoEmGzNuKpOWp__cLLveXf_WRdHDqojew9JZ-sh2OpsAlu0i_7vSu4AquzXxQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1461884871</pqid></control><display><type>article</type><title>Comparison of three labeled silica nanoparticles used as tracers in transport experiments in porous media. Part I: Syntheses and characterizations</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Vitorge, Elsa ; Szenknect, Stéphanie ; Martins, Jean M.F. ; Barthès, Véronique ; Auger, Aurélien ; Renard, Oliver ; Gaudet, Jean-Paul</creator><creatorcontrib>Vitorge, Elsa ; Szenknect, Stéphanie ; Martins, Jean M.F. ; Barthès, Véronique ; Auger, Aurélien ; Renard, Oliver ; Gaudet, Jean-Paul</creatorcontrib><description>The synthesis and the characterization of three kinds of labeled silica nanoparticles were performed. Three different labeling strategies were investigated: fluorescent organic molecule (FITC) embedded in silica matrix, heavy metal core (Ag(0)) and radioactive core (110mAg) surrounded by a silica shell. The main properties and the suitability of each kind of labeled nanoparticle in terms of size, surface properties, stability, detection limits, and cost were determined and compared regarding its use for transport studies. Fluorescent labeling was found the most convenient and the cheapest, but the best detection limits were reached with chemical (Ag(0)) and radio-labeled (110mAg) nanoparticles, which also allowed nondestructive quantifications. This work showed that the choice of labeled nanoparticles as surrogates of natural colloids or manufactured nanoparticles strongly depends on the experimental conditions, especially the concentration and amount required, the composition of the effluent, and the timescale of the experiment. [Display omitted] •Labeled silica nanotracers were synthesized using the sol–gel method.•The nanotracers were detectable by fluorescence, analytical chemistry or radioactivity measurement.•The nanotracers were characterized regarding their size, surface properties, stability, and detection limits.•The suitability of these nanotracers was evaluated in experiments dealing with colloid transport in natural porous media. How to synthesize and choose suitable tracers for engineered silica nanoparticles or natural colloids?</description><identifier>ISSN: 0269-7491</identifier><identifier>EISSN: 1873-6424</identifier><identifier>DOI: 10.1016/j.envpol.2013.07.031</identifier><identifier>PMID: 23948261</identifier><identifier>CODEN: ENVPAF</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Colloids - chemistry ; Concentration (composition) ; Continental interfaces, environment ; Core–shell nanoparticles ; Earth Sciences ; Earth, ocean, space ; Effluents ; Environmental Monitoring - methods ; Exact sciences and technology ; Fluorescent labeling ; Geochemistry ; Hydrogeology ; Hydrology ; Hydrology. Hydrogeology ; Marking ; Nanoparticles ; Nanoparticles - analysis ; Nanoparticles - chemistry ; Porosity ; Radioactive labeling ; Sciences of the Universe ; Silica colloids ; Silicon dioxide ; Silicon Dioxide - analysis ; Silicon Dioxide - chemistry ; Strategy ; Surface Properties ; Tracers ; Transport ; Water Pollutants, Chemical - analysis ; Water Pollutants, Chemical - chemistry</subject><ispartof>Environmental pollution (1987), 2014-01, Vol.184, p.605-612</ispartof><rights>2013 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2013 Elsevier Ltd. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c558t-ba9912a3eeebd6eb2edddc8dab183d72be6ee90c6b210d6d0941f5bb71124b133</citedby><cites>FETCH-LOGICAL-c558t-ba9912a3eeebd6eb2edddc8dab183d72be6ee90c6b210d6d0941f5bb71124b133</cites><orcidid>0000-0003-3691-3621 ; 0000-0003-0314-1311</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0269749113004004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,4009,27902,27903,27904,65309</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27994513$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23948261$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-02048829$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Vitorge, Elsa</creatorcontrib><creatorcontrib>Szenknect, Stéphanie</creatorcontrib><creatorcontrib>Martins, Jean M.F.</creatorcontrib><creatorcontrib>Barthès, Véronique</creatorcontrib><creatorcontrib>Auger, Aurélien</creatorcontrib><creatorcontrib>Renard, Oliver</creatorcontrib><creatorcontrib>Gaudet, Jean-Paul</creatorcontrib><title>Comparison of three labeled silica nanoparticles used as tracers in transport experiments in porous media. Part I: Syntheses and characterizations</title><title>Environmental pollution (1987)</title><addtitle>Environ Pollut</addtitle><description>The synthesis and the characterization of three kinds of labeled silica nanoparticles were performed. Three different labeling strategies were investigated: fluorescent organic molecule (FITC) embedded in silica matrix, heavy metal core (Ag(0)) and radioactive core (110mAg) surrounded by a silica shell. The main properties and the suitability of each kind of labeled nanoparticle in terms of size, surface properties, stability, detection limits, and cost were determined and compared regarding its use for transport studies. Fluorescent labeling was found the most convenient and the cheapest, but the best detection limits were reached with chemical (Ag(0)) and radio-labeled (110mAg) nanoparticles, which also allowed nondestructive quantifications. This work showed that the choice of labeled nanoparticles as surrogates of natural colloids or manufactured nanoparticles strongly depends on the experimental conditions, especially the concentration and amount required, the composition of the effluent, and the timescale of the experiment. [Display omitted] •Labeled silica nanotracers were synthesized using the sol–gel method.•The nanotracers were detectable by fluorescence, analytical chemistry or radioactivity measurement.•The nanotracers were characterized regarding their size, surface properties, stability, and detection limits.•The suitability of these nanotracers was evaluated in experiments dealing with colloid transport in natural porous media. How to synthesize and choose suitable tracers for engineered silica nanoparticles or natural colloids?</description><subject>Colloids - chemistry</subject><subject>Concentration (composition)</subject><subject>Continental interfaces, environment</subject><subject>Core–shell nanoparticles</subject><subject>Earth Sciences</subject><subject>Earth, ocean, space</subject><subject>Effluents</subject><subject>Environmental Monitoring - methods</subject><subject>Exact sciences and technology</subject><subject>Fluorescent labeling</subject><subject>Geochemistry</subject><subject>Hydrogeology</subject><subject>Hydrology</subject><subject>Hydrology. Hydrogeology</subject><subject>Marking</subject><subject>Nanoparticles</subject><subject>Nanoparticles - analysis</subject><subject>Nanoparticles - chemistry</subject><subject>Porosity</subject><subject>Radioactive labeling</subject><subject>Sciences of the Universe</subject><subject>Silica colloids</subject><subject>Silicon dioxide</subject><subject>Silicon Dioxide - analysis</subject><subject>Silicon Dioxide - chemistry</subject><subject>Strategy</subject><subject>Surface Properties</subject><subject>Tracers</subject><subject>Transport</subject><subject>Water Pollutants, Chemical - analysis</subject><subject>Water Pollutants, Chemical - chemistry</subject><issn>0269-7491</issn><issn>1873-6424</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNks1uEzEUhUcIREPhDRDyBgkWGfw3todFpSoqtFIkkIC15bFvFEcTe7CdiPIYPHGdJpQdsLLl-93rY5_TNC8Jbgkm4t2mhbCf4thSTFiLZYsZedTMiJJsLjjlj5sZpqKfS96Ts-ZZzhuMMWeMPW3OKOu5ooLMml-LuJ1M8jkGFFeorBMAGs0AIziU_eitQcGEWJni7QgZ7XKtmIxKMhZSRj4ctiFPMRUEPyZIfguh3BfqWdxltAXnTYs-1xno5j36chvKGnKdZYJDdm3qpFLbfpriY8jPmycrM2Z4cVrPm28frr4urufLTx9vFpfLue06VeaD6XtCDQOAwQkYKDjnrHJmIIo5SQcQAD22YqAEO-Fwz8mqGwZJCOUDYey8eXucuzajnqpqk251NF5fXy714QxTzJWi_Z5U9s2RnVL8voNc9NZnC-NoAtQXaiJUJxWXXP4HKgXrSMfFv1EuiFJcyYMAfkRtijknWD0oJlgf8qA3-pgHfciDxlLXPNS2V6cbdkN14aHpdwAq8PoEmGzNuKpOWp__cLLveXf_WRdHDqojew9JZ-sh2OpsAlu0i_7vSu4AquzXxQ</recordid><startdate>201401</startdate><enddate>201401</enddate><creator>Vitorge, Elsa</creator><creator>Szenknect, Stéphanie</creator><creator>Martins, Jean M.F.</creator><creator>Barthès, Véronique</creator><creator>Auger, Aurélien</creator><creator>Renard, Oliver</creator><creator>Gaudet, Jean-Paul</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7ST</scope><scope>7TV</scope><scope>7U7</scope><scope>C1K</scope><scope>SOI</scope><scope>7SU</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-3691-3621</orcidid><orcidid>https://orcid.org/0000-0003-0314-1311</orcidid></search><sort><creationdate>201401</creationdate><title>Comparison of three labeled silica nanoparticles used as tracers in transport experiments in porous media. Part I: Syntheses and characterizations</title><author>Vitorge, Elsa ; Szenknect, Stéphanie ; Martins, Jean M.F. ; Barthès, Véronique ; Auger, Aurélien ; Renard, Oliver ; Gaudet, Jean-Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c558t-ba9912a3eeebd6eb2edddc8dab183d72be6ee90c6b210d6d0941f5bb71124b133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Colloids - chemistry</topic><topic>Concentration (composition)</topic><topic>Continental interfaces, environment</topic><topic>Core–shell nanoparticles</topic><topic>Earth Sciences</topic><topic>Earth, ocean, space</topic><topic>Effluents</topic><topic>Environmental Monitoring - methods</topic><topic>Exact sciences and technology</topic><topic>Fluorescent labeling</topic><topic>Geochemistry</topic><topic>Hydrogeology</topic><topic>Hydrology</topic><topic>Hydrology. Hydrogeology</topic><topic>Marking</topic><topic>Nanoparticles</topic><topic>Nanoparticles - analysis</topic><topic>Nanoparticles - chemistry</topic><topic>Porosity</topic><topic>Radioactive labeling</topic><topic>Sciences of the Universe</topic><topic>Silica colloids</topic><topic>Silicon dioxide</topic><topic>Silicon Dioxide - analysis</topic><topic>Silicon Dioxide - chemistry</topic><topic>Strategy</topic><topic>Surface Properties</topic><topic>Tracers</topic><topic>Transport</topic><topic>Water Pollutants, Chemical - analysis</topic><topic>Water Pollutants, Chemical - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vitorge, Elsa</creatorcontrib><creatorcontrib>Szenknect, Stéphanie</creatorcontrib><creatorcontrib>Martins, Jean M.F.</creatorcontrib><creatorcontrib>Barthès, Véronique</creatorcontrib><creatorcontrib>Auger, Aurélien</creatorcontrib><creatorcontrib>Renard, Oliver</creatorcontrib><creatorcontrib>Gaudet, Jean-Paul</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Environment Abstracts</collection><collection>Pollution Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Environmental Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Environmental pollution (1987)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vitorge, Elsa</au><au>Szenknect, Stéphanie</au><au>Martins, Jean M.F.</au><au>Barthès, Véronique</au><au>Auger, Aurélien</au><au>Renard, Oliver</au><au>Gaudet, Jean-Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of three labeled silica nanoparticles used as tracers in transport experiments in porous media. Part I: Syntheses and characterizations</atitle><jtitle>Environmental pollution (1987)</jtitle><addtitle>Environ Pollut</addtitle><date>2014-01</date><risdate>2014</risdate><volume>184</volume><spage>605</spage><epage>612</epage><pages>605-612</pages><issn>0269-7491</issn><eissn>1873-6424</eissn><coden>ENVPAF</coden><abstract>The synthesis and the characterization of three kinds of labeled silica nanoparticles were performed. Three different labeling strategies were investigated: fluorescent organic molecule (FITC) embedded in silica matrix, heavy metal core (Ag(0)) and radioactive core (110mAg) surrounded by a silica shell. The main properties and the suitability of each kind of labeled nanoparticle in terms of size, surface properties, stability, detection limits, and cost were determined and compared regarding its use for transport studies. Fluorescent labeling was found the most convenient and the cheapest, but the best detection limits were reached with chemical (Ag(0)) and radio-labeled (110mAg) nanoparticles, which also allowed nondestructive quantifications. This work showed that the choice of labeled nanoparticles as surrogates of natural colloids or manufactured nanoparticles strongly depends on the experimental conditions, especially the concentration and amount required, the composition of the effluent, and the timescale of the experiment. [Display omitted] •Labeled silica nanotracers were synthesized using the sol–gel method.•The nanotracers were detectable by fluorescence, analytical chemistry or radioactivity measurement.•The nanotracers were characterized regarding their size, surface properties, stability, and detection limits.•The suitability of these nanotracers was evaluated in experiments dealing with colloid transport in natural porous media. How to synthesize and choose suitable tracers for engineered silica nanoparticles or natural colloids?</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><pmid>23948261</pmid><doi>10.1016/j.envpol.2013.07.031</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3691-3621</orcidid><orcidid>https://orcid.org/0000-0003-0314-1311</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0269-7491
ispartof Environmental pollution (1987), 2014-01, Vol.184, p.605-612
issn 0269-7491
1873-6424
language eng
recordid cdi_hal_primary_oai_HAL_hal_02048829v1
source MEDLINE; Elsevier ScienceDirect Journals
subjects Colloids - chemistry
Concentration (composition)
Continental interfaces, environment
Core–shell nanoparticles
Earth Sciences
Earth, ocean, space
Effluents
Environmental Monitoring - methods
Exact sciences and technology
Fluorescent labeling
Geochemistry
Hydrogeology
Hydrology
Hydrology. Hydrogeology
Marking
Nanoparticles
Nanoparticles - analysis
Nanoparticles - chemistry
Porosity
Radioactive labeling
Sciences of the Universe
Silica colloids
Silicon dioxide
Silicon Dioxide - analysis
Silicon Dioxide - chemistry
Strategy
Surface Properties
Tracers
Transport
Water Pollutants, Chemical - analysis
Water Pollutants, Chemical - chemistry
title Comparison of three labeled silica nanoparticles used as tracers in transport experiments in porous media. Part I: Syntheses and characterizations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T18%3A56%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20three%20labeled%20silica%20nanoparticles%20used%20as%20tracers%20in%20transport%20experiments%20in%20porous%20media.%20Part%20I:%20Syntheses%20and%20characterizations&rft.jtitle=Environmental%20pollution%20(1987)&rft.au=Vitorge,%20Elsa&rft.date=2014-01&rft.volume=184&rft.spage=605&rft.epage=612&rft.pages=605-612&rft.issn=0269-7491&rft.eissn=1873-6424&rft.coden=ENVPAF&rft_id=info:doi/10.1016/j.envpol.2013.07.031&rft_dat=%3Cproquest_hal_p%3E1461884871%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1461884871&rft_id=info:pmid/23948261&rft_els_id=S0269749113004004&rfr_iscdi=true