Polyhedra associated with identifying codes in graphs

The identifying code problem is a newly emerging search problem, challenging both from a theoretical and a computational point of view, even for special graphs like bipartite graphs. Hence, a typical line of attack for this problem is to determine minimum identifying codes of special graphs or to pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete Applied Mathematics 2018-08, Vol.245, p.16-27
Hauptverfasser: Argiroffo, Gabriela R, Bianchi, Silvia, P.Lucarini, Yanina, Wagler, Annegret K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 27
container_issue
container_start_page 16
container_title Discrete Applied Mathematics
container_volume 245
creator Argiroffo, Gabriela R
Bianchi, Silvia
P.Lucarini, Yanina
Wagler, Annegret K
description The identifying code problem is a newly emerging search problem, challenging both from a theoretical and a computational point of view, even for special graphs like bipartite graphs. Hence, a typical line of attack for this problem is to determine minimum identifying codes of special graphs or to provide bounds for their size. In this work we study the associated polyhedra and present some general results on their combinatorial structure. We demonstrate how the polyhedral approach can be applied to find minimum identifying codes for special graphs, and discuss further lines of research in order to obtain strong lower bounds stemming from linear relaxations of the identifying code polyhedron, enhanced by suitable cutting planes to be used in a B&C framework.
doi_str_mv 10.1016/j.dam.2017.06.005
format Article
fullrecord <record><control><sourceid>hal</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02047315v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_02047315v1</sourcerecordid><originalsourceid>FETCH-hal_primary_oai_HAL_hal_02047315v13</originalsourceid><addsrcrecordid>eNqVirsKwjAUQDMoWB8f4JbVofGmtY9VRHFwcHBwC5cmbVLapiRF6d9bwR_wLAcOh5AtB8aBp_uaSWxZBDxjkDKAZEaCqadhxPPngiy9r2GC52lAkrttRq2kQ4re28LgoCR9m0FTI1U3mHI0XUULK5WnpqOVw177NZmX2Hi1-XlFdpfz43QNNTaid6ZFNwqLRlyPN_FtEMEhi3ny4vE_7wdyXj5X</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Polyhedra associated with identifying codes in graphs</title><source>Elsevier ScienceDirect Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Argiroffo, Gabriela R ; Bianchi, Silvia ; P.Lucarini, Yanina ; Wagler, Annegret K</creator><creatorcontrib>Argiroffo, Gabriela R ; Bianchi, Silvia ; P.Lucarini, Yanina ; Wagler, Annegret K</creatorcontrib><description>The identifying code problem is a newly emerging search problem, challenging both from a theoretical and a computational point of view, even for special graphs like bipartite graphs. Hence, a typical line of attack for this problem is to determine minimum identifying codes of special graphs or to provide bounds for their size. In this work we study the associated polyhedra and present some general results on their combinatorial structure. We demonstrate how the polyhedral approach can be applied to find minimum identifying codes for special graphs, and discuss further lines of research in order to obtain strong lower bounds stemming from linear relaxations of the identifying code polyhedron, enhanced by suitable cutting planes to be used in a B&amp;C framework.</description><identifier>ISSN: 0166-218X</identifier><identifier>DOI: 10.1016/j.dam.2017.06.005</identifier><language>eng</language><publisher>Elsevier</publisher><subject>Computer Science ; Discrete Mathematics</subject><ispartof>Discrete Applied Mathematics, 2018-08, Vol.245, p.16-27</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02047315$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Argiroffo, Gabriela R</creatorcontrib><creatorcontrib>Bianchi, Silvia</creatorcontrib><creatorcontrib>P.Lucarini, Yanina</creatorcontrib><creatorcontrib>Wagler, Annegret K</creatorcontrib><title>Polyhedra associated with identifying codes in graphs</title><title>Discrete Applied Mathematics</title><description>The identifying code problem is a newly emerging search problem, challenging both from a theoretical and a computational point of view, even for special graphs like bipartite graphs. Hence, a typical line of attack for this problem is to determine minimum identifying codes of special graphs or to provide bounds for their size. In this work we study the associated polyhedra and present some general results on their combinatorial structure. We demonstrate how the polyhedral approach can be applied to find minimum identifying codes for special graphs, and discuss further lines of research in order to obtain strong lower bounds stemming from linear relaxations of the identifying code polyhedron, enhanced by suitable cutting planes to be used in a B&amp;C framework.</description><subject>Computer Science</subject><subject>Discrete Mathematics</subject><issn>0166-218X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqVirsKwjAUQDMoWB8f4JbVofGmtY9VRHFwcHBwC5cmbVLapiRF6d9bwR_wLAcOh5AtB8aBp_uaSWxZBDxjkDKAZEaCqadhxPPngiy9r2GC52lAkrttRq2kQ4re28LgoCR9m0FTI1U3mHI0XUULK5WnpqOVw177NZmX2Hi1-XlFdpfz43QNNTaid6ZFNwqLRlyPN_FtEMEhi3ny4vE_7wdyXj5X</recordid><startdate>201808</startdate><enddate>201808</enddate><creator>Argiroffo, Gabriela R</creator><creator>Bianchi, Silvia</creator><creator>P.Lucarini, Yanina</creator><creator>Wagler, Annegret K</creator><general>Elsevier</general><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>201808</creationdate><title>Polyhedra associated with identifying codes in graphs</title><author>Argiroffo, Gabriela R ; Bianchi, Silvia ; P.Lucarini, Yanina ; Wagler, Annegret K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-hal_primary_oai_HAL_hal_02047315v13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Computer Science</topic><topic>Discrete Mathematics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Argiroffo, Gabriela R</creatorcontrib><creatorcontrib>Bianchi, Silvia</creatorcontrib><creatorcontrib>P.Lucarini, Yanina</creatorcontrib><creatorcontrib>Wagler, Annegret K</creatorcontrib><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Discrete Applied Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Argiroffo, Gabriela R</au><au>Bianchi, Silvia</au><au>P.Lucarini, Yanina</au><au>Wagler, Annegret K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polyhedra associated with identifying codes in graphs</atitle><jtitle>Discrete Applied Mathematics</jtitle><date>2018-08</date><risdate>2018</risdate><volume>245</volume><spage>16</spage><epage>27</epage><pages>16-27</pages><issn>0166-218X</issn><abstract>The identifying code problem is a newly emerging search problem, challenging both from a theoretical and a computational point of view, even for special graphs like bipartite graphs. Hence, a typical line of attack for this problem is to determine minimum identifying codes of special graphs or to provide bounds for their size. In this work we study the associated polyhedra and present some general results on their combinatorial structure. We demonstrate how the polyhedral approach can be applied to find minimum identifying codes for special graphs, and discuss further lines of research in order to obtain strong lower bounds stemming from linear relaxations of the identifying code polyhedron, enhanced by suitable cutting planes to be used in a B&amp;C framework.</abstract><pub>Elsevier</pub><doi>10.1016/j.dam.2017.06.005</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0166-218X
ispartof Discrete Applied Mathematics, 2018-08, Vol.245, p.16-27
issn 0166-218X
language eng
recordid cdi_hal_primary_oai_HAL_hal_02047315v1
source Elsevier ScienceDirect Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Computer Science
Discrete Mathematics
title Polyhedra associated with identifying codes in graphs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T10%3A39%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polyhedra%20associated%20with%20identifying%20codes%20in%20graphs&rft.jtitle=Discrete%20Applied%20Mathematics&rft.au=Argiroffo,%20Gabriela%20R&rft.date=2018-08&rft.volume=245&rft.spage=16&rft.epage=27&rft.pages=16-27&rft.issn=0166-218X&rft_id=info:doi/10.1016/j.dam.2017.06.005&rft_dat=%3Chal%3Eoai_HAL_hal_02047315v1%3C/hal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true