On Atoms‐in‐Molecules Energies from Kohn–Sham Calculations
Herein, we discuss three methods to partition the total molecular energy into additive atomic contributions within the framework of Bader's atoms‐in‐molecules theory and in the particular context of Kohn–Sham density functional theory. The first method is derived from the virial theorem, wherea...
Gespeichert in:
Veröffentlicht in: | Chemphyschem 2017-10, Vol.18 (19), p.2675-2687 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2687 |
---|---|
container_issue | 19 |
container_start_page | 2675 |
container_title | Chemphyschem |
container_volume | 18 |
creator | Tognetti, Vincent Joubert, Laurent |
description | Herein, we discuss three methods to partition the total molecular energy into additive atomic contributions within the framework of Bader's atoms‐in‐molecules theory and in the particular context of Kohn–Sham density functional theory. The first method is derived from the virial theorem, whereas the two other schemes, termed “standard” and “model”, are based on Pendás’ interacting‐quantum‐atoms decomposition. The methods are then compared for a dataset of molecules of interest for direct application in organic chemistry and biochemistry. Finally, the relevance of the three methods for the prediction of intrinsic reactivity properties (e.g., electrophilicity) or for unravelling the nature of chemical bonding (e.g., in halogen bonds, beyond the pure electrostatic point of view), is examined and paves the way for their more systematic use for the in silico design of new reactants.
Best of three? Three methods, derived from the virial theorem and Pendás’ interacting‐quantum‐atoms decomposition, to partition the total molecular energy of a system into additive atomic contributions within the framework of Bader's atoms‐in‐molecules theory and in the context of Kohn–Sham density functional theory are discussed. MEPmax=molecular electrostatic potential; Ecompl=complexation energies for halogen‐bonded complexes. |
doi_str_mv | 10.1002/cphc.201700637 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02046313v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1947384839</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4847-1b695c581e9728cb2d2c3e509f27713dbdcca46579dfb47f5fcace895870de7d3</originalsourceid><addsrcrecordid>eNqF0U1LwzAYB_AgipvTq0cZeNHDZl6b5OYo04mTCeo5pGnqOtpmNquymx9B8Bv6SczYnODFS_KQ_PInyQPAMYJ9BCG-MPOp6WOIOIQR4TugjSiRPR5RtLupKSasBQ68n0EIBeRoH7SwiDhjkWyDy0nVHSxc6b_eP_IqDHeusKYprO8OK1s_56HIald2b900bH8-THXZjXURiF7krvKHYC_ThbdHm7kDnq6Gj_GoN55c38SDcc9QQXkPJZFkhglkJcfCJDjFhlgGZYY5RyRNUmM0jRiXaZZQnrHMaGOFZILD1PKUdMD5OneqCzWv81LXS-V0rkaDsVqtQQxpRBB5RcGere28di-N9QtV5t7YotCVdY1XSCImBEOEBXr6h85cU1fhJUFRTgQVRAbVXytTO-9rm21vgKBa9UGt-qC2fQgHTjaxTVLadMt_Pj4AuQZveWGX_8Sp-H4U_4Z_A4RwlRw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1947384839</pqid></control><display><type>article</type><title>On Atoms‐in‐Molecules Energies from Kohn–Sham Calculations</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Tognetti, Vincent ; Joubert, Laurent</creator><creatorcontrib>Tognetti, Vincent ; Joubert, Laurent</creatorcontrib><description>Herein, we discuss three methods to partition the total molecular energy into additive atomic contributions within the framework of Bader's atoms‐in‐molecules theory and in the particular context of Kohn–Sham density functional theory. The first method is derived from the virial theorem, whereas the two other schemes, termed “standard” and “model”, are based on Pendás’ interacting‐quantum‐atoms decomposition. The methods are then compared for a dataset of molecules of interest for direct application in organic chemistry and biochemistry. Finally, the relevance of the three methods for the prediction of intrinsic reactivity properties (e.g., electrophilicity) or for unravelling the nature of chemical bonding (e.g., in halogen bonds, beyond the pure electrostatic point of view), is examined and paves the way for their more systematic use for the in silico design of new reactants.
Best of three? Three methods, derived from the virial theorem and Pendás’ interacting‐quantum‐atoms decomposition, to partition the total molecular energy of a system into additive atomic contributions within the framework of Bader's atoms‐in‐molecules theory and in the context of Kohn–Sham density functional theory are discussed. MEPmax=molecular electrostatic potential; Ecompl=complexation energies for halogen‐bonded complexes.</description><identifier>ISSN: 1439-4235</identifier><identifier>EISSN: 1439-7641</identifier><identifier>DOI: 10.1002/cphc.201700637</identifier><identifier>PMID: 28675569</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>atoms-in-molecules theory ; Chemical bonds ; Chemical Sciences ; electrophilicity ; energy decomposition ; exchange interactions ; Nuclear electric power generation ; Organic chemistry ; Virial theorem</subject><ispartof>Chemphyschem, 2017-10, Vol.18 (19), p.2675-2687</ispartof><rights>2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4847-1b695c581e9728cb2d2c3e509f27713dbdcca46579dfb47f5fcace895870de7d3</citedby><cites>FETCH-LOGICAL-c4847-1b695c581e9728cb2d2c3e509f27713dbdcca46579dfb47f5fcace895870de7d3</cites><orcidid>0000-0002-0292-3509 ; 0000-0003-2649-112X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcphc.201700637$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcphc.201700637$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28675569$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://normandie-univ.hal.science/hal-02046313$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Tognetti, Vincent</creatorcontrib><creatorcontrib>Joubert, Laurent</creatorcontrib><title>On Atoms‐in‐Molecules Energies from Kohn–Sham Calculations</title><title>Chemphyschem</title><addtitle>Chemphyschem</addtitle><description>Herein, we discuss three methods to partition the total molecular energy into additive atomic contributions within the framework of Bader's atoms‐in‐molecules theory and in the particular context of Kohn–Sham density functional theory. The first method is derived from the virial theorem, whereas the two other schemes, termed “standard” and “model”, are based on Pendás’ interacting‐quantum‐atoms decomposition. The methods are then compared for a dataset of molecules of interest for direct application in organic chemistry and biochemistry. Finally, the relevance of the three methods for the prediction of intrinsic reactivity properties (e.g., electrophilicity) or for unravelling the nature of chemical bonding (e.g., in halogen bonds, beyond the pure electrostatic point of view), is examined and paves the way for their more systematic use for the in silico design of new reactants.
Best of three? Three methods, derived from the virial theorem and Pendás’ interacting‐quantum‐atoms decomposition, to partition the total molecular energy of a system into additive atomic contributions within the framework of Bader's atoms‐in‐molecules theory and in the context of Kohn–Sham density functional theory are discussed. MEPmax=molecular electrostatic potential; Ecompl=complexation energies for halogen‐bonded complexes.</description><subject>atoms-in-molecules theory</subject><subject>Chemical bonds</subject><subject>Chemical Sciences</subject><subject>electrophilicity</subject><subject>energy decomposition</subject><subject>exchange interactions</subject><subject>Nuclear electric power generation</subject><subject>Organic chemistry</subject><subject>Virial theorem</subject><issn>1439-4235</issn><issn>1439-7641</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqF0U1LwzAYB_AgipvTq0cZeNHDZl6b5OYo04mTCeo5pGnqOtpmNquymx9B8Bv6SczYnODFS_KQ_PInyQPAMYJ9BCG-MPOp6WOIOIQR4TugjSiRPR5RtLupKSasBQ68n0EIBeRoH7SwiDhjkWyDy0nVHSxc6b_eP_IqDHeusKYprO8OK1s_56HIald2b900bH8-THXZjXURiF7krvKHYC_ThbdHm7kDnq6Gj_GoN55c38SDcc9QQXkPJZFkhglkJcfCJDjFhlgGZYY5RyRNUmM0jRiXaZZQnrHMaGOFZILD1PKUdMD5OneqCzWv81LXS-V0rkaDsVqtQQxpRBB5RcGere28di-N9QtV5t7YotCVdY1XSCImBEOEBXr6h85cU1fhJUFRTgQVRAbVXytTO-9rm21vgKBa9UGt-qC2fQgHTjaxTVLadMt_Pj4AuQZveWGX_8Sp-H4U_4Z_A4RwlRw</recordid><startdate>20171006</startdate><enddate>20171006</enddate><creator>Tognetti, Vincent</creator><creator>Joubert, Laurent</creator><general>Wiley Subscription Services, Inc</general><general>Wiley-VCH Verlag</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-0292-3509</orcidid><orcidid>https://orcid.org/0000-0003-2649-112X</orcidid></search><sort><creationdate>20171006</creationdate><title>On Atoms‐in‐Molecules Energies from Kohn–Sham Calculations</title><author>Tognetti, Vincent ; Joubert, Laurent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4847-1b695c581e9728cb2d2c3e509f27713dbdcca46579dfb47f5fcace895870de7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>atoms-in-molecules theory</topic><topic>Chemical bonds</topic><topic>Chemical Sciences</topic><topic>electrophilicity</topic><topic>energy decomposition</topic><topic>exchange interactions</topic><topic>Nuclear electric power generation</topic><topic>Organic chemistry</topic><topic>Virial theorem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tognetti, Vincent</creatorcontrib><creatorcontrib>Joubert, Laurent</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Chemphyschem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tognetti, Vincent</au><au>Joubert, Laurent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Atoms‐in‐Molecules Energies from Kohn–Sham Calculations</atitle><jtitle>Chemphyschem</jtitle><addtitle>Chemphyschem</addtitle><date>2017-10-06</date><risdate>2017</risdate><volume>18</volume><issue>19</issue><spage>2675</spage><epage>2687</epage><pages>2675-2687</pages><issn>1439-4235</issn><eissn>1439-7641</eissn><abstract>Herein, we discuss three methods to partition the total molecular energy into additive atomic contributions within the framework of Bader's atoms‐in‐molecules theory and in the particular context of Kohn–Sham density functional theory. The first method is derived from the virial theorem, whereas the two other schemes, termed “standard” and “model”, are based on Pendás’ interacting‐quantum‐atoms decomposition. The methods are then compared for a dataset of molecules of interest for direct application in organic chemistry and biochemistry. Finally, the relevance of the three methods for the prediction of intrinsic reactivity properties (e.g., electrophilicity) or for unravelling the nature of chemical bonding (e.g., in halogen bonds, beyond the pure electrostatic point of view), is examined and paves the way for their more systematic use for the in silico design of new reactants.
Best of three? Three methods, derived from the virial theorem and Pendás’ interacting‐quantum‐atoms decomposition, to partition the total molecular energy of a system into additive atomic contributions within the framework of Bader's atoms‐in‐molecules theory and in the context of Kohn–Sham density functional theory are discussed. MEPmax=molecular electrostatic potential; Ecompl=complexation energies for halogen‐bonded complexes.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28675569</pmid><doi>10.1002/cphc.201700637</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0292-3509</orcidid><orcidid>https://orcid.org/0000-0003-2649-112X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1439-4235 |
ispartof | Chemphyschem, 2017-10, Vol.18 (19), p.2675-2687 |
issn | 1439-4235 1439-7641 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02046313v1 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | atoms-in-molecules theory Chemical bonds Chemical Sciences electrophilicity energy decomposition exchange interactions Nuclear electric power generation Organic chemistry Virial theorem |
title | On Atoms‐in‐Molecules Energies from Kohn–Sham Calculations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T21%3A40%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Atoms%E2%80%90in%E2%80%90Molecules%20Energies%20from%20Kohn%E2%80%93Sham%20Calculations&rft.jtitle=Chemphyschem&rft.au=Tognetti,%20Vincent&rft.date=2017-10-06&rft.volume=18&rft.issue=19&rft.spage=2675&rft.epage=2687&rft.pages=2675-2687&rft.issn=1439-4235&rft.eissn=1439-7641&rft_id=info:doi/10.1002/cphc.201700637&rft_dat=%3Cproquest_hal_p%3E1947384839%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1947384839&rft_id=info:pmid/28675569&rfr_iscdi=true |