On Atoms‐in‐Molecules Energies from Kohn–Sham Calculations

Herein, we discuss three methods to partition the total molecular energy into additive atomic contributions within the framework of Bader's atoms‐in‐molecules theory and in the particular context of Kohn–Sham density functional theory. The first method is derived from the virial theorem, wherea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemphyschem 2017-10, Vol.18 (19), p.2675-2687
Hauptverfasser: Tognetti, Vincent, Joubert, Laurent
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2687
container_issue 19
container_start_page 2675
container_title Chemphyschem
container_volume 18
creator Tognetti, Vincent
Joubert, Laurent
description Herein, we discuss three methods to partition the total molecular energy into additive atomic contributions within the framework of Bader's atoms‐in‐molecules theory and in the particular context of Kohn–Sham density functional theory. The first method is derived from the virial theorem, whereas the two other schemes, termed “standard” and “model”, are based on Pendás’ interacting‐quantum‐atoms decomposition. The methods are then compared for a dataset of molecules of interest for direct application in organic chemistry and biochemistry. Finally, the relevance of the three methods for the prediction of intrinsic reactivity properties (e.g., electrophilicity) or for unravelling the nature of chemical bonding (e.g., in halogen bonds, beyond the pure electrostatic point of view), is examined and paves the way for their more systematic use for the in silico design of new reactants. Best of three? Three methods, derived from the virial theorem and Pendás’ interacting‐quantum‐atoms decomposition, to partition the total molecular energy of a system into additive atomic contributions within the framework of Bader's atoms‐in‐molecules theory and in the context of Kohn–Sham density functional theory are discussed. MEPmax=molecular electrostatic potential; Ecompl=complexation energies for halogen‐bonded complexes.
doi_str_mv 10.1002/cphc.201700637
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02046313v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1947384839</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4847-1b695c581e9728cb2d2c3e509f27713dbdcca46579dfb47f5fcace895870de7d3</originalsourceid><addsrcrecordid>eNqF0U1LwzAYB_AgipvTq0cZeNHDZl6b5OYo04mTCeo5pGnqOtpmNquymx9B8Bv6SczYnODFS_KQ_PInyQPAMYJ9BCG-MPOp6WOIOIQR4TugjSiRPR5RtLupKSasBQ68n0EIBeRoH7SwiDhjkWyDy0nVHSxc6b_eP_IqDHeusKYprO8OK1s_56HIald2b900bH8-THXZjXURiF7krvKHYC_ThbdHm7kDnq6Gj_GoN55c38SDcc9QQXkPJZFkhglkJcfCJDjFhlgGZYY5RyRNUmM0jRiXaZZQnrHMaGOFZILD1PKUdMD5OneqCzWv81LXS-V0rkaDsVqtQQxpRBB5RcGere28di-N9QtV5t7YotCVdY1XSCImBEOEBXr6h85cU1fhJUFRTgQVRAbVXytTO-9rm21vgKBa9UGt-qC2fQgHTjaxTVLadMt_Pj4AuQZveWGX_8Sp-H4U_4Z_A4RwlRw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1947384839</pqid></control><display><type>article</type><title>On Atoms‐in‐Molecules Energies from Kohn–Sham Calculations</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Tognetti, Vincent ; Joubert, Laurent</creator><creatorcontrib>Tognetti, Vincent ; Joubert, Laurent</creatorcontrib><description>Herein, we discuss three methods to partition the total molecular energy into additive atomic contributions within the framework of Bader's atoms‐in‐molecules theory and in the particular context of Kohn–Sham density functional theory. The first method is derived from the virial theorem, whereas the two other schemes, termed “standard” and “model”, are based on Pendás’ interacting‐quantum‐atoms decomposition. The methods are then compared for a dataset of molecules of interest for direct application in organic chemistry and biochemistry. Finally, the relevance of the three methods for the prediction of intrinsic reactivity properties (e.g., electrophilicity) or for unravelling the nature of chemical bonding (e.g., in halogen bonds, beyond the pure electrostatic point of view), is examined and paves the way for their more systematic use for the in silico design of new reactants. Best of three? Three methods, derived from the virial theorem and Pendás’ interacting‐quantum‐atoms decomposition, to partition the total molecular energy of a system into additive atomic contributions within the framework of Bader's atoms‐in‐molecules theory and in the context of Kohn–Sham density functional theory are discussed. MEPmax=molecular electrostatic potential; Ecompl=complexation energies for halogen‐bonded complexes.</description><identifier>ISSN: 1439-4235</identifier><identifier>EISSN: 1439-7641</identifier><identifier>DOI: 10.1002/cphc.201700637</identifier><identifier>PMID: 28675569</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>atoms-in-molecules theory ; Chemical bonds ; Chemical Sciences ; electrophilicity ; energy decomposition ; exchange interactions ; Nuclear electric power generation ; Organic chemistry ; Virial theorem</subject><ispartof>Chemphyschem, 2017-10, Vol.18 (19), p.2675-2687</ispartof><rights>2017 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2017 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2017 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4847-1b695c581e9728cb2d2c3e509f27713dbdcca46579dfb47f5fcace895870de7d3</citedby><cites>FETCH-LOGICAL-c4847-1b695c581e9728cb2d2c3e509f27713dbdcca46579dfb47f5fcace895870de7d3</cites><orcidid>0000-0002-0292-3509 ; 0000-0003-2649-112X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcphc.201700637$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcphc.201700637$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28675569$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://normandie-univ.hal.science/hal-02046313$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Tognetti, Vincent</creatorcontrib><creatorcontrib>Joubert, Laurent</creatorcontrib><title>On Atoms‐in‐Molecules Energies from Kohn–Sham Calculations</title><title>Chemphyschem</title><addtitle>Chemphyschem</addtitle><description>Herein, we discuss three methods to partition the total molecular energy into additive atomic contributions within the framework of Bader's atoms‐in‐molecules theory and in the particular context of Kohn–Sham density functional theory. The first method is derived from the virial theorem, whereas the two other schemes, termed “standard” and “model”, are based on Pendás’ interacting‐quantum‐atoms decomposition. The methods are then compared for a dataset of molecules of interest for direct application in organic chemistry and biochemistry. Finally, the relevance of the three methods for the prediction of intrinsic reactivity properties (e.g., electrophilicity) or for unravelling the nature of chemical bonding (e.g., in halogen bonds, beyond the pure electrostatic point of view), is examined and paves the way for their more systematic use for the in silico design of new reactants. Best of three? Three methods, derived from the virial theorem and Pendás’ interacting‐quantum‐atoms decomposition, to partition the total molecular energy of a system into additive atomic contributions within the framework of Bader's atoms‐in‐molecules theory and in the context of Kohn–Sham density functional theory are discussed. MEPmax=molecular electrostatic potential; Ecompl=complexation energies for halogen‐bonded complexes.</description><subject>atoms-in-molecules theory</subject><subject>Chemical bonds</subject><subject>Chemical Sciences</subject><subject>electrophilicity</subject><subject>energy decomposition</subject><subject>exchange interactions</subject><subject>Nuclear electric power generation</subject><subject>Organic chemistry</subject><subject>Virial theorem</subject><issn>1439-4235</issn><issn>1439-7641</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqF0U1LwzAYB_AgipvTq0cZeNHDZl6b5OYo04mTCeo5pGnqOtpmNquymx9B8Bv6SczYnODFS_KQ_PInyQPAMYJ9BCG-MPOp6WOIOIQR4TugjSiRPR5RtLupKSasBQ68n0EIBeRoH7SwiDhjkWyDy0nVHSxc6b_eP_IqDHeusKYprO8OK1s_56HIald2b900bH8-THXZjXURiF7krvKHYC_ThbdHm7kDnq6Gj_GoN55c38SDcc9QQXkPJZFkhglkJcfCJDjFhlgGZYY5RyRNUmM0jRiXaZZQnrHMaGOFZILD1PKUdMD5OneqCzWv81LXS-V0rkaDsVqtQQxpRBB5RcGere28di-N9QtV5t7YotCVdY1XSCImBEOEBXr6h85cU1fhJUFRTgQVRAbVXytTO-9rm21vgKBa9UGt-qC2fQgHTjaxTVLadMt_Pj4AuQZveWGX_8Sp-H4U_4Z_A4RwlRw</recordid><startdate>20171006</startdate><enddate>20171006</enddate><creator>Tognetti, Vincent</creator><creator>Joubert, Laurent</creator><general>Wiley Subscription Services, Inc</general><general>Wiley-VCH Verlag</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-0292-3509</orcidid><orcidid>https://orcid.org/0000-0003-2649-112X</orcidid></search><sort><creationdate>20171006</creationdate><title>On Atoms‐in‐Molecules Energies from Kohn–Sham Calculations</title><author>Tognetti, Vincent ; Joubert, Laurent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4847-1b695c581e9728cb2d2c3e509f27713dbdcca46579dfb47f5fcace895870de7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>atoms-in-molecules theory</topic><topic>Chemical bonds</topic><topic>Chemical Sciences</topic><topic>electrophilicity</topic><topic>energy decomposition</topic><topic>exchange interactions</topic><topic>Nuclear electric power generation</topic><topic>Organic chemistry</topic><topic>Virial theorem</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tognetti, Vincent</creatorcontrib><creatorcontrib>Joubert, Laurent</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Chemphyschem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tognetti, Vincent</au><au>Joubert, Laurent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Atoms‐in‐Molecules Energies from Kohn–Sham Calculations</atitle><jtitle>Chemphyschem</jtitle><addtitle>Chemphyschem</addtitle><date>2017-10-06</date><risdate>2017</risdate><volume>18</volume><issue>19</issue><spage>2675</spage><epage>2687</epage><pages>2675-2687</pages><issn>1439-4235</issn><eissn>1439-7641</eissn><abstract>Herein, we discuss three methods to partition the total molecular energy into additive atomic contributions within the framework of Bader's atoms‐in‐molecules theory and in the particular context of Kohn–Sham density functional theory. The first method is derived from the virial theorem, whereas the two other schemes, termed “standard” and “model”, are based on Pendás’ interacting‐quantum‐atoms decomposition. The methods are then compared for a dataset of molecules of interest for direct application in organic chemistry and biochemistry. Finally, the relevance of the three methods for the prediction of intrinsic reactivity properties (e.g., electrophilicity) or for unravelling the nature of chemical bonding (e.g., in halogen bonds, beyond the pure electrostatic point of view), is examined and paves the way for their more systematic use for the in silico design of new reactants. Best of three? Three methods, derived from the virial theorem and Pendás’ interacting‐quantum‐atoms decomposition, to partition the total molecular energy of a system into additive atomic contributions within the framework of Bader's atoms‐in‐molecules theory and in the context of Kohn–Sham density functional theory are discussed. MEPmax=molecular electrostatic potential; Ecompl=complexation energies for halogen‐bonded complexes.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28675569</pmid><doi>10.1002/cphc.201700637</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0292-3509</orcidid><orcidid>https://orcid.org/0000-0003-2649-112X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1439-4235
ispartof Chemphyschem, 2017-10, Vol.18 (19), p.2675-2687
issn 1439-4235
1439-7641
language eng
recordid cdi_hal_primary_oai_HAL_hal_02046313v1
source Wiley Online Library Journals Frontfile Complete
subjects atoms-in-molecules theory
Chemical bonds
Chemical Sciences
electrophilicity
energy decomposition
exchange interactions
Nuclear electric power generation
Organic chemistry
Virial theorem
title On Atoms‐in‐Molecules Energies from Kohn–Sham Calculations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T21%3A40%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Atoms%E2%80%90in%E2%80%90Molecules%20Energies%20from%20Kohn%E2%80%93Sham%20Calculations&rft.jtitle=Chemphyschem&rft.au=Tognetti,%20Vincent&rft.date=2017-10-06&rft.volume=18&rft.issue=19&rft.spage=2675&rft.epage=2687&rft.pages=2675-2687&rft.issn=1439-4235&rft.eissn=1439-7641&rft_id=info:doi/10.1002/cphc.201700637&rft_dat=%3Cproquest_hal_p%3E1947384839%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1947384839&rft_id=info:pmid/28675569&rfr_iscdi=true