On the Online Min-Wait Relocation Problem

In a carsharing system, a fleet of cars is distributed at stations in an urban area, customers can take and return cars at any time and station. For operating such a system in a satisfactory way, the stations have to keep a good ratio between the total number of places and cars in each station, in o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronic notes in discrete mathematics 2015-12, Vol.50, p.281-286
Hauptverfasser: Halffmann, Pascal, Krumke, Sven O., Quilliot, Alain, Wagler, Annegret K., Wegener, Jan-Thierry
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 286
container_issue
container_start_page 281
container_title Electronic notes in discrete mathematics
container_volume 50
creator Halffmann, Pascal
Krumke, Sven O.
Quilliot, Alain
Wagler, Annegret K.
Wegener, Jan-Thierry
description In a carsharing system, a fleet of cars is distributed at stations in an urban area, customers can take and return cars at any time and station. For operating such a system in a satisfactory way, the stations have to keep a good ratio between the total number of places and cars in each station, in order to refuse as few customer requests as possible. This leads to the problem of relocating cars between stations. We consider the Online Min-Wait Relocation Problem, aiming at satisfying all customer requests with a minimal total waiting time, and show the non-existence of competitive online algorithms against several adversaries. Furthermore, we consider the max/max ratio, and show that this ratio cannot be used to theoretically evaluate online algorithms for the Online Min-Wait Relocation Problem either.
doi_str_mv 10.1016/j.endm.2015.07.047
format Article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02045800v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1571065315002024</els_id><sourcerecordid>S1571065315002024</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2937-52a1b27647d2f2012413a38f1eb9dee7eabe7adea60389319930ede56dcfc5c3</originalsourceid><addsrcrecordid>eNp9kMFKw0AQhhdRsFZfwFOuPSTO7GazDXgpRVuhUpGCx2WzO6Fb0o1sQsG3N6EinjzNMPzfMPMxdo-QIWDxcMgouGPGAWUGKoNcXbAJSoUpFFJc_umv2U3XHQDEHJWcsNk2JP2ekm1ofKDk1Yf0w_g-eaemtab3bUjeYls1dLxlV7VpOrr7qVO2e37aLdfpZrt6WS42qeWlUKnkBiuuilw5Xg_38ByFEfMaqSodkSJTkTKOTDGcUAosSwHkSBbO1lZaMWWz89q9afRn9EcTv3RrvF4vNnqcAYdczgFOOGT5OWtj23WR6l8AQY9e9EGPXvToRYPSg5cBejxDNDxx8hR1Zz0FS85Hsr12rf8P_wby5Gm8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the Online Min-Wait Relocation Problem</title><source>Access via ScienceDirect (Elsevier)</source><creator>Halffmann, Pascal ; Krumke, Sven O. ; Quilliot, Alain ; Wagler, Annegret K. ; Wegener, Jan-Thierry</creator><creatorcontrib>Halffmann, Pascal ; Krumke, Sven O. ; Quilliot, Alain ; Wagler, Annegret K. ; Wegener, Jan-Thierry</creatorcontrib><description>In a carsharing system, a fleet of cars is distributed at stations in an urban area, customers can take and return cars at any time and station. For operating such a system in a satisfactory way, the stations have to keep a good ratio between the total number of places and cars in each station, in order to refuse as few customer requests as possible. This leads to the problem of relocating cars between stations. We consider the Online Min-Wait Relocation Problem, aiming at satisfying all customer requests with a minimal total waiting time, and show the non-existence of competitive online algorithms against several adversaries. Furthermore, we consider the max/max ratio, and show that this ratio cannot be used to theoretically evaluate online algorithms for the Online Min-Wait Relocation Problem either.</description><identifier>ISSN: 1571-0653</identifier><identifier>EISSN: 1571-0653</identifier><identifier>DOI: 10.1016/j.endm.2015.07.047</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>competitive ratio ; Computer Science ; max/max ratio ; Operations Research ; relocation problem</subject><ispartof>Electronic notes in discrete mathematics, 2015-12, Vol.50, p.281-286</ispartof><rights>2015 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2937-52a1b27647d2f2012413a38f1eb9dee7eabe7adea60389319930ede56dcfc5c3</citedby><cites>FETCH-LOGICAL-c2937-52a1b27647d2f2012413a38f1eb9dee7eabe7adea60389319930ede56dcfc5c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.endm.2015.07.047$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02045800$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Halffmann, Pascal</creatorcontrib><creatorcontrib>Krumke, Sven O.</creatorcontrib><creatorcontrib>Quilliot, Alain</creatorcontrib><creatorcontrib>Wagler, Annegret K.</creatorcontrib><creatorcontrib>Wegener, Jan-Thierry</creatorcontrib><title>On the Online Min-Wait Relocation Problem</title><title>Electronic notes in discrete mathematics</title><description>In a carsharing system, a fleet of cars is distributed at stations in an urban area, customers can take and return cars at any time and station. For operating such a system in a satisfactory way, the stations have to keep a good ratio between the total number of places and cars in each station, in order to refuse as few customer requests as possible. This leads to the problem of relocating cars between stations. We consider the Online Min-Wait Relocation Problem, aiming at satisfying all customer requests with a minimal total waiting time, and show the non-existence of competitive online algorithms against several adversaries. Furthermore, we consider the max/max ratio, and show that this ratio cannot be used to theoretically evaluate online algorithms for the Online Min-Wait Relocation Problem either.</description><subject>competitive ratio</subject><subject>Computer Science</subject><subject>max/max ratio</subject><subject>Operations Research</subject><subject>relocation problem</subject><issn>1571-0653</issn><issn>1571-0653</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKw0AQhhdRsFZfwFOuPSTO7GazDXgpRVuhUpGCx2WzO6Fb0o1sQsG3N6EinjzNMPzfMPMxdo-QIWDxcMgouGPGAWUGKoNcXbAJSoUpFFJc_umv2U3XHQDEHJWcsNk2JP2ekm1ofKDk1Yf0w_g-eaemtab3bUjeYls1dLxlV7VpOrr7qVO2e37aLdfpZrt6WS42qeWlUKnkBiuuilw5Xg_38ByFEfMaqSodkSJTkTKOTDGcUAosSwHkSBbO1lZaMWWz89q9afRn9EcTv3RrvF4vNnqcAYdczgFOOGT5OWtj23WR6l8AQY9e9EGPXvToRYPSg5cBejxDNDxx8hR1Zz0FS85Hsr12rf8P_wby5Gm8</recordid><startdate>201512</startdate><enddate>201512</enddate><creator>Halffmann, Pascal</creator><creator>Krumke, Sven O.</creator><creator>Quilliot, Alain</creator><creator>Wagler, Annegret K.</creator><creator>Wegener, Jan-Thierry</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>201512</creationdate><title>On the Online Min-Wait Relocation Problem</title><author>Halffmann, Pascal ; Krumke, Sven O. ; Quilliot, Alain ; Wagler, Annegret K. ; Wegener, Jan-Thierry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2937-52a1b27647d2f2012413a38f1eb9dee7eabe7adea60389319930ede56dcfc5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>competitive ratio</topic><topic>Computer Science</topic><topic>max/max ratio</topic><topic>Operations Research</topic><topic>relocation problem</topic><toplevel>online_resources</toplevel><creatorcontrib>Halffmann, Pascal</creatorcontrib><creatorcontrib>Krumke, Sven O.</creatorcontrib><creatorcontrib>Quilliot, Alain</creatorcontrib><creatorcontrib>Wagler, Annegret K.</creatorcontrib><creatorcontrib>Wegener, Jan-Thierry</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Electronic notes in discrete mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Halffmann, Pascal</au><au>Krumke, Sven O.</au><au>Quilliot, Alain</au><au>Wagler, Annegret K.</au><au>Wegener, Jan-Thierry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Online Min-Wait Relocation Problem</atitle><jtitle>Electronic notes in discrete mathematics</jtitle><date>2015-12</date><risdate>2015</risdate><volume>50</volume><spage>281</spage><epage>286</epage><pages>281-286</pages><issn>1571-0653</issn><eissn>1571-0653</eissn><abstract>In a carsharing system, a fleet of cars is distributed at stations in an urban area, customers can take and return cars at any time and station. For operating such a system in a satisfactory way, the stations have to keep a good ratio between the total number of places and cars in each station, in order to refuse as few customer requests as possible. This leads to the problem of relocating cars between stations. We consider the Online Min-Wait Relocation Problem, aiming at satisfying all customer requests with a minimal total waiting time, and show the non-existence of competitive online algorithms against several adversaries. Furthermore, we consider the max/max ratio, and show that this ratio cannot be used to theoretically evaluate online algorithms for the Online Min-Wait Relocation Problem either.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.endm.2015.07.047</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1571-0653
ispartof Electronic notes in discrete mathematics, 2015-12, Vol.50, p.281-286
issn 1571-0653
1571-0653
language eng
recordid cdi_hal_primary_oai_HAL_hal_02045800v1
source Access via ScienceDirect (Elsevier)
subjects competitive ratio
Computer Science
max/max ratio
Operations Research
relocation problem
title On the Online Min-Wait Relocation Problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A26%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Online%20Min-Wait%20Relocation%20Problem&rft.jtitle=Electronic%20notes%20in%20discrete%20mathematics&rft.au=Halffmann,%20Pascal&rft.date=2015-12&rft.volume=50&rft.spage=281&rft.epage=286&rft.pages=281-286&rft.issn=1571-0653&rft.eissn=1571-0653&rft_id=info:doi/10.1016/j.endm.2015.07.047&rft_dat=%3Celsevier_hal_p%3ES1571065315002024%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S1571065315002024&rfr_iscdi=true