On the Online Min-Wait Relocation Problem
In a carsharing system, a fleet of cars is distributed at stations in an urban area, customers can take and return cars at any time and station. For operating such a system in a satisfactory way, the stations have to keep a good ratio between the total number of places and cars in each station, in o...
Gespeichert in:
Veröffentlicht in: | Electronic notes in discrete mathematics 2015-12, Vol.50, p.281-286 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 286 |
---|---|
container_issue | |
container_start_page | 281 |
container_title | Electronic notes in discrete mathematics |
container_volume | 50 |
creator | Halffmann, Pascal Krumke, Sven O. Quilliot, Alain Wagler, Annegret K. Wegener, Jan-Thierry |
description | In a carsharing system, a fleet of cars is distributed at stations in an urban area, customers can take and return cars at any time and station. For operating such a system in a satisfactory way, the stations have to keep a good ratio between the total number of places and cars in each station, in order to refuse as few customer requests as possible. This leads to the problem of relocating cars between stations. We consider the Online Min-Wait Relocation Problem, aiming at satisfying all customer requests with a minimal total waiting time, and show the non-existence of competitive online algorithms against several adversaries. Furthermore, we consider the max/max ratio, and show that this ratio cannot be used to theoretically evaluate online algorithms for the Online Min-Wait Relocation Problem either. |
doi_str_mv | 10.1016/j.endm.2015.07.047 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02045800v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1571065315002024</els_id><sourcerecordid>S1571065315002024</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2937-52a1b27647d2f2012413a38f1eb9dee7eabe7adea60389319930ede56dcfc5c3</originalsourceid><addsrcrecordid>eNp9kMFKw0AQhhdRsFZfwFOuPSTO7GazDXgpRVuhUpGCx2WzO6Fb0o1sQsG3N6EinjzNMPzfMPMxdo-QIWDxcMgouGPGAWUGKoNcXbAJSoUpFFJc_umv2U3XHQDEHJWcsNk2JP2ekm1ofKDk1Yf0w_g-eaemtab3bUjeYls1dLxlV7VpOrr7qVO2e37aLdfpZrt6WS42qeWlUKnkBiuuilw5Xg_38ByFEfMaqSodkSJTkTKOTDGcUAosSwHkSBbO1lZaMWWz89q9afRn9EcTv3RrvF4vNnqcAYdczgFOOGT5OWtj23WR6l8AQY9e9EGPXvToRYPSg5cBejxDNDxx8hR1Zz0FS85Hsr12rf8P_wby5Gm8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On the Online Min-Wait Relocation Problem</title><source>Access via ScienceDirect (Elsevier)</source><creator>Halffmann, Pascal ; Krumke, Sven O. ; Quilliot, Alain ; Wagler, Annegret K. ; Wegener, Jan-Thierry</creator><creatorcontrib>Halffmann, Pascal ; Krumke, Sven O. ; Quilliot, Alain ; Wagler, Annegret K. ; Wegener, Jan-Thierry</creatorcontrib><description>In a carsharing system, a fleet of cars is distributed at stations in an urban area, customers can take and return cars at any time and station. For operating such a system in a satisfactory way, the stations have to keep a good ratio between the total number of places and cars in each station, in order to refuse as few customer requests as possible. This leads to the problem of relocating cars between stations. We consider the Online Min-Wait Relocation Problem, aiming at satisfying all customer requests with a minimal total waiting time, and show the non-existence of competitive online algorithms against several adversaries. Furthermore, we consider the max/max ratio, and show that this ratio cannot be used to theoretically evaluate online algorithms for the Online Min-Wait Relocation Problem either.</description><identifier>ISSN: 1571-0653</identifier><identifier>EISSN: 1571-0653</identifier><identifier>DOI: 10.1016/j.endm.2015.07.047</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>competitive ratio ; Computer Science ; max/max ratio ; Operations Research ; relocation problem</subject><ispartof>Electronic notes in discrete mathematics, 2015-12, Vol.50, p.281-286</ispartof><rights>2015 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2937-52a1b27647d2f2012413a38f1eb9dee7eabe7adea60389319930ede56dcfc5c3</citedby><cites>FETCH-LOGICAL-c2937-52a1b27647d2f2012413a38f1eb9dee7eabe7adea60389319930ede56dcfc5c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.endm.2015.07.047$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02045800$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Halffmann, Pascal</creatorcontrib><creatorcontrib>Krumke, Sven O.</creatorcontrib><creatorcontrib>Quilliot, Alain</creatorcontrib><creatorcontrib>Wagler, Annegret K.</creatorcontrib><creatorcontrib>Wegener, Jan-Thierry</creatorcontrib><title>On the Online Min-Wait Relocation Problem</title><title>Electronic notes in discrete mathematics</title><description>In a carsharing system, a fleet of cars is distributed at stations in an urban area, customers can take and return cars at any time and station. For operating such a system in a satisfactory way, the stations have to keep a good ratio between the total number of places and cars in each station, in order to refuse as few customer requests as possible. This leads to the problem of relocating cars between stations. We consider the Online Min-Wait Relocation Problem, aiming at satisfying all customer requests with a minimal total waiting time, and show the non-existence of competitive online algorithms against several adversaries. Furthermore, we consider the max/max ratio, and show that this ratio cannot be used to theoretically evaluate online algorithms for the Online Min-Wait Relocation Problem either.</description><subject>competitive ratio</subject><subject>Computer Science</subject><subject>max/max ratio</subject><subject>Operations Research</subject><subject>relocation problem</subject><issn>1571-0653</issn><issn>1571-0653</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKw0AQhhdRsFZfwFOuPSTO7GazDXgpRVuhUpGCx2WzO6Fb0o1sQsG3N6EinjzNMPzfMPMxdo-QIWDxcMgouGPGAWUGKoNcXbAJSoUpFFJc_umv2U3XHQDEHJWcsNk2JP2ekm1ofKDk1Yf0w_g-eaemtab3bUjeYls1dLxlV7VpOrr7qVO2e37aLdfpZrt6WS42qeWlUKnkBiuuilw5Xg_38ByFEfMaqSodkSJTkTKOTDGcUAosSwHkSBbO1lZaMWWz89q9afRn9EcTv3RrvF4vNnqcAYdczgFOOGT5OWtj23WR6l8AQY9e9EGPXvToRYPSg5cBejxDNDxx8hR1Zz0FS85Hsr12rf8P_wby5Gm8</recordid><startdate>201512</startdate><enddate>201512</enddate><creator>Halffmann, Pascal</creator><creator>Krumke, Sven O.</creator><creator>Quilliot, Alain</creator><creator>Wagler, Annegret K.</creator><creator>Wegener, Jan-Thierry</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>201512</creationdate><title>On the Online Min-Wait Relocation Problem</title><author>Halffmann, Pascal ; Krumke, Sven O. ; Quilliot, Alain ; Wagler, Annegret K. ; Wegener, Jan-Thierry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2937-52a1b27647d2f2012413a38f1eb9dee7eabe7adea60389319930ede56dcfc5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>competitive ratio</topic><topic>Computer Science</topic><topic>max/max ratio</topic><topic>Operations Research</topic><topic>relocation problem</topic><toplevel>online_resources</toplevel><creatorcontrib>Halffmann, Pascal</creatorcontrib><creatorcontrib>Krumke, Sven O.</creatorcontrib><creatorcontrib>Quilliot, Alain</creatorcontrib><creatorcontrib>Wagler, Annegret K.</creatorcontrib><creatorcontrib>Wegener, Jan-Thierry</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Electronic notes in discrete mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Halffmann, Pascal</au><au>Krumke, Sven O.</au><au>Quilliot, Alain</au><au>Wagler, Annegret K.</au><au>Wegener, Jan-Thierry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Online Min-Wait Relocation Problem</atitle><jtitle>Electronic notes in discrete mathematics</jtitle><date>2015-12</date><risdate>2015</risdate><volume>50</volume><spage>281</spage><epage>286</epage><pages>281-286</pages><issn>1571-0653</issn><eissn>1571-0653</eissn><abstract>In a carsharing system, a fleet of cars is distributed at stations in an urban area, customers can take and return cars at any time and station. For operating such a system in a satisfactory way, the stations have to keep a good ratio between the total number of places and cars in each station, in order to refuse as few customer requests as possible. This leads to the problem of relocating cars between stations. We consider the Online Min-Wait Relocation Problem, aiming at satisfying all customer requests with a minimal total waiting time, and show the non-existence of competitive online algorithms against several adversaries. Furthermore, we consider the max/max ratio, and show that this ratio cannot be used to theoretically evaluate online algorithms for the Online Min-Wait Relocation Problem either.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.endm.2015.07.047</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1571-0653 |
ispartof | Electronic notes in discrete mathematics, 2015-12, Vol.50, p.281-286 |
issn | 1571-0653 1571-0653 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02045800v1 |
source | Access via ScienceDirect (Elsevier) |
subjects | competitive ratio Computer Science max/max ratio Operations Research relocation problem |
title | On the Online Min-Wait Relocation Problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T11%3A26%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Online%20Min-Wait%20Relocation%20Problem&rft.jtitle=Electronic%20notes%20in%20discrete%20mathematics&rft.au=Halffmann,%20Pascal&rft.date=2015-12&rft.volume=50&rft.spage=281&rft.epage=286&rft.pages=281-286&rft.issn=1571-0653&rft.eissn=1571-0653&rft_id=info:doi/10.1016/j.endm.2015.07.047&rft_dat=%3Celsevier_hal_p%3ES1571065315002024%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S1571065315002024&rfr_iscdi=true |