A linear-time algorithm for the identifying code problem on block graphs
The identifying code problem is a special search problem, challenging both from a theoretical and from a computational point of view, even for several graphs where other usually hard problems are easy to solve, like bipartite graphs or chordal graphs. Hence, a typical line of attack for this problem...
Gespeichert in:
Veröffentlicht in: | Electronic notes in discrete mathematics 2017-11, Vol.62, p.249-254 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 254 |
---|---|
container_issue | |
container_start_page | 249 |
container_title | Electronic notes in discrete mathematics |
container_volume | 62 |
creator | Argiroffo, Gabriela R. Bianchi, Silvia M. Lucarini, Yanina Wagler, Annegret K. |
description | The identifying code problem is a special search problem, challenging both from a theoretical and from a computational point of view, even for several graphs where other usually hard problems are easy to solve, like bipartite graphs or chordal graphs. Hence, a typical line of attack for this problem is to determine minimum identifying codes of special graphs. In this work we study the problem of determining the cardinality of a minimum identifying code in block graphs (that are diamond-free chordal graphs). We present a linear-time algorithm for this problem, as a generalization of a linear-time algorithm proposed by Auger in 2010 for the case of trees. Thereby, we provide a subclass of chordal graphs for which the identifying code problem can be solved in linear time. |
doi_str_mv | 10.1016/j.endm.2017.10.043 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02045776v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1571065317302822</els_id><sourcerecordid>oai_HAL_hal_02045776v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2933-df41be76ccb98407484c03bd56ce98f11fa80867074c2ff1044d9205ef7465683</originalsourceid><addsrcrecordid>eNp9kMFKxDAQhoMouK6-gKdcPbRO2jRpwcuyqCsseNFzSJPJNmvbLGlZ2Le3ZUU8eZrhn_kG5iPknkHKgInHfYq97dIMmJyCFHh-QRaskCwBUeSXf_prcjMMe4C8ZLJYkM2Ktr5HHZPRd0h1uwvRj01HXYh0bJB6i_3o3cn3O2qCRXqIoW6xo6GndRvMF91FfWiGW3LldDvg3U9dks-X54_1Jtm-v76tV9vEZFWeJ9ZxVqMUxtRVyUHykhvIa1sIg1XpGHO6hFLIaWIy5xhwbqsMCnSSi0KU-ZI8nO82ulWH6DsdTyporzarrZozyIAXUoojm3az866JYRgiul-AgZq9qb2avanZ25xN3ibo6Qzh9MXRY1SD8dgbtD6iGZUN_j_8G0fwdO4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A linear-time algorithm for the identifying code problem on block graphs</title><source>Elsevier ScienceDirect Journals</source><creator>Argiroffo, Gabriela R. ; Bianchi, Silvia M. ; Lucarini, Yanina ; Wagler, Annegret K.</creator><creatorcontrib>Argiroffo, Gabriela R. ; Bianchi, Silvia M. ; Lucarini, Yanina ; Wagler, Annegret K.</creatorcontrib><description>The identifying code problem is a special search problem, challenging both from a theoretical and from a computational point of view, even for several graphs where other usually hard problems are easy to solve, like bipartite graphs or chordal graphs. Hence, a typical line of attack for this problem is to determine minimum identifying codes of special graphs. In this work we study the problem of determining the cardinality of a minimum identifying code in block graphs (that are diamond-free chordal graphs). We present a linear-time algorithm for this problem, as a generalization of a linear-time algorithm proposed by Auger in 2010 for the case of trees. Thereby, we provide a subclass of chordal graphs for which the identifying code problem can be solved in linear time.</description><identifier>ISSN: 1571-0653</identifier><identifier>EISSN: 1571-0653</identifier><identifier>DOI: 10.1016/j.endm.2017.10.043</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>block graphs ; computational complexity ; Computer Science ; Discrete Mathematics ; identifying codes</subject><ispartof>Electronic notes in discrete mathematics, 2017-11, Vol.62, p.249-254</ispartof><rights>2017 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2933-df41be76ccb98407484c03bd56ce98f11fa80867074c2ff1044d9205ef7465683</citedby><cites>FETCH-LOGICAL-c2933-df41be76ccb98407484c03bd56ce98f11fa80867074c2ff1044d9205ef7465683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1571065317302822$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02045776$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Argiroffo, Gabriela R.</creatorcontrib><creatorcontrib>Bianchi, Silvia M.</creatorcontrib><creatorcontrib>Lucarini, Yanina</creatorcontrib><creatorcontrib>Wagler, Annegret K.</creatorcontrib><title>A linear-time algorithm for the identifying code problem on block graphs</title><title>Electronic notes in discrete mathematics</title><description>The identifying code problem is a special search problem, challenging both from a theoretical and from a computational point of view, even for several graphs where other usually hard problems are easy to solve, like bipartite graphs or chordal graphs. Hence, a typical line of attack for this problem is to determine minimum identifying codes of special graphs. In this work we study the problem of determining the cardinality of a minimum identifying code in block graphs (that are diamond-free chordal graphs). We present a linear-time algorithm for this problem, as a generalization of a linear-time algorithm proposed by Auger in 2010 for the case of trees. Thereby, we provide a subclass of chordal graphs for which the identifying code problem can be solved in linear time.</description><subject>block graphs</subject><subject>computational complexity</subject><subject>Computer Science</subject><subject>Discrete Mathematics</subject><subject>identifying codes</subject><issn>1571-0653</issn><issn>1571-0653</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKxDAQhoMouK6-gKdcPbRO2jRpwcuyqCsseNFzSJPJNmvbLGlZ2Le3ZUU8eZrhn_kG5iPknkHKgInHfYq97dIMmJyCFHh-QRaskCwBUeSXf_prcjMMe4C8ZLJYkM2Ktr5HHZPRd0h1uwvRj01HXYh0bJB6i_3o3cn3O2qCRXqIoW6xo6GndRvMF91FfWiGW3LldDvg3U9dks-X54_1Jtm-v76tV9vEZFWeJ9ZxVqMUxtRVyUHykhvIa1sIg1XpGHO6hFLIaWIy5xhwbqsMCnSSi0KU-ZI8nO82ulWH6DsdTyporzarrZozyIAXUoojm3az866JYRgiul-AgZq9qb2avanZ25xN3ibo6Qzh9MXRY1SD8dgbtD6iGZUN_j_8G0fwdO4</recordid><startdate>201711</startdate><enddate>201711</enddate><creator>Argiroffo, Gabriela R.</creator><creator>Bianchi, Silvia M.</creator><creator>Lucarini, Yanina</creator><creator>Wagler, Annegret K.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>201711</creationdate><title>A linear-time algorithm for the identifying code problem on block graphs</title><author>Argiroffo, Gabriela R. ; Bianchi, Silvia M. ; Lucarini, Yanina ; Wagler, Annegret K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2933-df41be76ccb98407484c03bd56ce98f11fa80867074c2ff1044d9205ef7465683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>block graphs</topic><topic>computational complexity</topic><topic>Computer Science</topic><topic>Discrete Mathematics</topic><topic>identifying codes</topic><toplevel>online_resources</toplevel><creatorcontrib>Argiroffo, Gabriela R.</creatorcontrib><creatorcontrib>Bianchi, Silvia M.</creatorcontrib><creatorcontrib>Lucarini, Yanina</creatorcontrib><creatorcontrib>Wagler, Annegret K.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Electronic notes in discrete mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Argiroffo, Gabriela R.</au><au>Bianchi, Silvia M.</au><au>Lucarini, Yanina</au><au>Wagler, Annegret K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A linear-time algorithm for the identifying code problem on block graphs</atitle><jtitle>Electronic notes in discrete mathematics</jtitle><date>2017-11</date><risdate>2017</risdate><volume>62</volume><spage>249</spage><epage>254</epage><pages>249-254</pages><issn>1571-0653</issn><eissn>1571-0653</eissn><abstract>The identifying code problem is a special search problem, challenging both from a theoretical and from a computational point of view, even for several graphs where other usually hard problems are easy to solve, like bipartite graphs or chordal graphs. Hence, a typical line of attack for this problem is to determine minimum identifying codes of special graphs. In this work we study the problem of determining the cardinality of a minimum identifying code in block graphs (that are diamond-free chordal graphs). We present a linear-time algorithm for this problem, as a generalization of a linear-time algorithm proposed by Auger in 2010 for the case of trees. Thereby, we provide a subclass of chordal graphs for which the identifying code problem can be solved in linear time.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.endm.2017.10.043</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1571-0653 |
ispartof | Electronic notes in discrete mathematics, 2017-11, Vol.62, p.249-254 |
issn | 1571-0653 1571-0653 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02045776v1 |
source | Elsevier ScienceDirect Journals |
subjects | block graphs computational complexity Computer Science Discrete Mathematics identifying codes |
title | A linear-time algorithm for the identifying code problem on block graphs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T10%3A18%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20linear-time%20algorithm%20for%20the%20identifying%20code%20problem%20on%20block%20graphs&rft.jtitle=Electronic%20notes%20in%20discrete%20mathematics&rft.au=Argiroffo,%20Gabriela%20R.&rft.date=2017-11&rft.volume=62&rft.spage=249&rft.epage=254&rft.pages=249-254&rft.issn=1571-0653&rft.eissn=1571-0653&rft_id=info:doi/10.1016/j.endm.2017.10.043&rft_dat=%3Chal_cross%3Eoai_HAL_hal_02045776v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S1571065317302822&rfr_iscdi=true |