Assessment of models and methods for pressurized spherical composites

The elastic properties of a spherical heterogeneous structure with isotropic periodic components is analyzed and a methodology is developed using the two-scale asymptotic homogenization method (AHM) and spherical assemblage model (SAM). The effective coefficients are obtained via AHM for two differe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics and mechanics of solids 2018-02, Vol.23 (2), p.136-147
Hauptverfasser: Guinovart-Sanjuán, David, Rizzoni, Raffaella, Rodríguez-Ramos, Reinaldo, Guinovart-Díaz, Raúl, Bravo-Castillero, Julián, Alfonso-Rodríguez, Ransés, Lebon, Frederic, Dumont, Serge, Sabina, Federico J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 147
container_issue 2
container_start_page 136
container_title Mathematics and mechanics of solids
container_volume 23
creator Guinovart-Sanjuán, David
Rizzoni, Raffaella
Rodríguez-Ramos, Reinaldo
Guinovart-Díaz, Raúl
Bravo-Castillero, Julián
Alfonso-Rodríguez, Ransés
Lebon, Frederic
Dumont, Serge
Sabina, Federico J
description The elastic properties of a spherical heterogeneous structure with isotropic periodic components is analyzed and a methodology is developed using the two-scale asymptotic homogenization method (AHM) and spherical assemblage model (SAM). The effective coefficients are obtained via AHM for two different composites: (a) composite with perfect contact between two layers distributed periodically along the radial axis; and (b) considering a thin elastic interphase between the layers (intermediate layer) distributed periodically along the radial axis under perfect contact. As a result, the derived overall properties via AHM for homogeneous spherical structure have transversely isotropic behavior. Consequently, the homogenized problem is solved. Using SAM, the analytical exact solutions for appropriate boundary value problems are provided for different number of layers for the cases (a) and (b) in the spherical composite. The numerical results for the displacements, radial and circumferential stresses for both methods are compared considering a spherical composite material loaded by an inside pressure with the two cases of contact conditions between the layers (a) and (b).
doi_str_mv 10.1177/1081286516673233
format Article
fullrecord <record><control><sourceid>sage_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02021023v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_1081286516673233</sage_id><sourcerecordid>10.1177_1081286516673233</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-eddf8c059236af51c3a5645760c8f6bedea1980f3ea5b7d18f5b4c5ff914134e3</originalsourceid><addsrcrecordid>eNp1kEFLAzEQhYMoWKt3j7l6WM0km832WEq1QsGLnkOaTOyW3WbJbAX99W6peBA8zTDvewPvMXYL4h7AmAcQNci60lBVRkmlztgETAmFErI-H_dRLo76Jbsi2gkhpDZqwpZzIiTqcD_wFHmXArbE3T7wDodtCsRjyrzPI3PIzRcGTv0Wc-Ndy33q-kTNgHTNLqJrCW9-5pS9PS5fF6ti_fL0vJivC6-0GQoMIdZe6JlUlYsavHK6KrWphK9jtcGADma1iAqd3pgAddSb0usYZ1CCKlFN2d3p79a1ts9N5_KnTa6xq_naHm9CCglCqg8YWXFifU5EGeOvAYQ9Vmb_VjZaipOF3DvaXTrk_Zjmf_4bsYFreQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Assessment of models and methods for pressurized spherical composites</title><source>Access via SAGE</source><creator>Guinovart-Sanjuán, David ; Rizzoni, Raffaella ; Rodríguez-Ramos, Reinaldo ; Guinovart-Díaz, Raúl ; Bravo-Castillero, Julián ; Alfonso-Rodríguez, Ransés ; Lebon, Frederic ; Dumont, Serge ; Sabina, Federico J</creator><creatorcontrib>Guinovart-Sanjuán, David ; Rizzoni, Raffaella ; Rodríguez-Ramos, Reinaldo ; Guinovart-Díaz, Raúl ; Bravo-Castillero, Julián ; Alfonso-Rodríguez, Ransés ; Lebon, Frederic ; Dumont, Serge ; Sabina, Federico J</creatorcontrib><description>The elastic properties of a spherical heterogeneous structure with isotropic periodic components is analyzed and a methodology is developed using the two-scale asymptotic homogenization method (AHM) and spherical assemblage model (SAM). The effective coefficients are obtained via AHM for two different composites: (a) composite with perfect contact between two layers distributed periodically along the radial axis; and (b) considering a thin elastic interphase between the layers (intermediate layer) distributed periodically along the radial axis under perfect contact. As a result, the derived overall properties via AHM for homogeneous spherical structure have transversely isotropic behavior. Consequently, the homogenized problem is solved. Using SAM, the analytical exact solutions for appropriate boundary value problems are provided for different number of layers for the cases (a) and (b) in the spherical composite. The numerical results for the displacements, radial and circumferential stresses for both methods are compared considering a spherical composite material loaded by an inside pressure with the two cases of contact conditions between the layers (a) and (b).</description><identifier>ISSN: 1081-2865</identifier><identifier>EISSN: 1741-3028</identifier><identifier>DOI: 10.1177/1081286516673233</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Mechanics ; Physics ; Solid mechanics</subject><ispartof>Mathematics and mechanics of solids, 2018-02, Vol.23 (2), p.136-147</ispartof><rights>The Author(s) 2016</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-eddf8c059236af51c3a5645760c8f6bedea1980f3ea5b7d18f5b4c5ff914134e3</citedby><cites>FETCH-LOGICAL-c357t-eddf8c059236af51c3a5645760c8f6bedea1980f3ea5b7d18f5b4c5ff914134e3</cites><orcidid>0000-0003-4292-7202 ; 0000-0003-4962-7878 ; 0000-0001-8271-5314</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://journals.sagepub.com/doi/pdf/10.1177/1081286516673233$$EPDF$$P50$$Gsage$$H</linktopdf><linktohtml>$$Uhttps://journals.sagepub.com/doi/10.1177/1081286516673233$$EHTML$$P50$$Gsage$$H</linktohtml><link.rule.ids>230,314,780,784,885,21819,27924,27925,43621,43622</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02021023$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Guinovart-Sanjuán, David</creatorcontrib><creatorcontrib>Rizzoni, Raffaella</creatorcontrib><creatorcontrib>Rodríguez-Ramos, Reinaldo</creatorcontrib><creatorcontrib>Guinovart-Díaz, Raúl</creatorcontrib><creatorcontrib>Bravo-Castillero, Julián</creatorcontrib><creatorcontrib>Alfonso-Rodríguez, Ransés</creatorcontrib><creatorcontrib>Lebon, Frederic</creatorcontrib><creatorcontrib>Dumont, Serge</creatorcontrib><creatorcontrib>Sabina, Federico J</creatorcontrib><title>Assessment of models and methods for pressurized spherical composites</title><title>Mathematics and mechanics of solids</title><description>The elastic properties of a spherical heterogeneous structure with isotropic periodic components is analyzed and a methodology is developed using the two-scale asymptotic homogenization method (AHM) and spherical assemblage model (SAM). The effective coefficients are obtained via AHM for two different composites: (a) composite with perfect contact between two layers distributed periodically along the radial axis; and (b) considering a thin elastic interphase between the layers (intermediate layer) distributed periodically along the radial axis under perfect contact. As a result, the derived overall properties via AHM for homogeneous spherical structure have transversely isotropic behavior. Consequently, the homogenized problem is solved. Using SAM, the analytical exact solutions for appropriate boundary value problems are provided for different number of layers for the cases (a) and (b) in the spherical composite. The numerical results for the displacements, radial and circumferential stresses for both methods are compared considering a spherical composite material loaded by an inside pressure with the two cases of contact conditions between the layers (a) and (b).</description><subject>Mechanics</subject><subject>Physics</subject><subject>Solid mechanics</subject><issn>1081-2865</issn><issn>1741-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLAzEQhYMoWKt3j7l6WM0km832WEq1QsGLnkOaTOyW3WbJbAX99W6peBA8zTDvewPvMXYL4h7AmAcQNci60lBVRkmlztgETAmFErI-H_dRLo76Jbsi2gkhpDZqwpZzIiTqcD_wFHmXArbE3T7wDodtCsRjyrzPI3PIzRcGTv0Wc-Ndy33q-kTNgHTNLqJrCW9-5pS9PS5fF6ti_fL0vJivC6-0GQoMIdZe6JlUlYsavHK6KrWphK9jtcGADma1iAqd3pgAddSb0usYZ1CCKlFN2d3p79a1ts9N5_KnTa6xq_naHm9CCglCqg8YWXFifU5EGeOvAYQ9Vmb_VjZaipOF3DvaXTrk_Zjmf_4bsYFreQ</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Guinovart-Sanjuán, David</creator><creator>Rizzoni, Raffaella</creator><creator>Rodríguez-Ramos, Reinaldo</creator><creator>Guinovart-Díaz, Raúl</creator><creator>Bravo-Castillero, Julián</creator><creator>Alfonso-Rodríguez, Ransés</creator><creator>Lebon, Frederic</creator><creator>Dumont, Serge</creator><creator>Sabina, Federico J</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-4292-7202</orcidid><orcidid>https://orcid.org/0000-0003-4962-7878</orcidid><orcidid>https://orcid.org/0000-0001-8271-5314</orcidid></search><sort><creationdate>20180201</creationdate><title>Assessment of models and methods for pressurized spherical composites</title><author>Guinovart-Sanjuán, David ; Rizzoni, Raffaella ; Rodríguez-Ramos, Reinaldo ; Guinovart-Díaz, Raúl ; Bravo-Castillero, Julián ; Alfonso-Rodríguez, Ransés ; Lebon, Frederic ; Dumont, Serge ; Sabina, Federico J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-eddf8c059236af51c3a5645760c8f6bedea1980f3ea5b7d18f5b4c5ff914134e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Mechanics</topic><topic>Physics</topic><topic>Solid mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guinovart-Sanjuán, David</creatorcontrib><creatorcontrib>Rizzoni, Raffaella</creatorcontrib><creatorcontrib>Rodríguez-Ramos, Reinaldo</creatorcontrib><creatorcontrib>Guinovart-Díaz, Raúl</creatorcontrib><creatorcontrib>Bravo-Castillero, Julián</creatorcontrib><creatorcontrib>Alfonso-Rodríguez, Ransés</creatorcontrib><creatorcontrib>Lebon, Frederic</creatorcontrib><creatorcontrib>Dumont, Serge</creatorcontrib><creatorcontrib>Sabina, Federico J</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Mathematics and mechanics of solids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guinovart-Sanjuán, David</au><au>Rizzoni, Raffaella</au><au>Rodríguez-Ramos, Reinaldo</au><au>Guinovart-Díaz, Raúl</au><au>Bravo-Castillero, Julián</au><au>Alfonso-Rodríguez, Ransés</au><au>Lebon, Frederic</au><au>Dumont, Serge</au><au>Sabina, Federico J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Assessment of models and methods for pressurized spherical composites</atitle><jtitle>Mathematics and mechanics of solids</jtitle><date>2018-02-01</date><risdate>2018</risdate><volume>23</volume><issue>2</issue><spage>136</spage><epage>147</epage><pages>136-147</pages><issn>1081-2865</issn><eissn>1741-3028</eissn><abstract>The elastic properties of a spherical heterogeneous structure with isotropic periodic components is analyzed and a methodology is developed using the two-scale asymptotic homogenization method (AHM) and spherical assemblage model (SAM). The effective coefficients are obtained via AHM for two different composites: (a) composite with perfect contact between two layers distributed periodically along the radial axis; and (b) considering a thin elastic interphase between the layers (intermediate layer) distributed periodically along the radial axis under perfect contact. As a result, the derived overall properties via AHM for homogeneous spherical structure have transversely isotropic behavior. Consequently, the homogenized problem is solved. Using SAM, the analytical exact solutions for appropriate boundary value problems are provided for different number of layers for the cases (a) and (b) in the spherical composite. The numerical results for the displacements, radial and circumferential stresses for both methods are compared considering a spherical composite material loaded by an inside pressure with the two cases of contact conditions between the layers (a) and (b).</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/1081286516673233</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4292-7202</orcidid><orcidid>https://orcid.org/0000-0003-4962-7878</orcidid><orcidid>https://orcid.org/0000-0001-8271-5314</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1081-2865
ispartof Mathematics and mechanics of solids, 2018-02, Vol.23 (2), p.136-147
issn 1081-2865
1741-3028
language eng
recordid cdi_hal_primary_oai_HAL_hal_02021023v1
source Access via SAGE
subjects Mechanics
Physics
Solid mechanics
title Assessment of models and methods for pressurized spherical composites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T07%3A58%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-sage_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Assessment%20of%20models%20and%20methods%20for%20pressurized%20spherical%20composites&rft.jtitle=Mathematics%20and%20mechanics%20of%20solids&rft.au=Guinovart-Sanju%C3%A1n,%20David&rft.date=2018-02-01&rft.volume=23&rft.issue=2&rft.spage=136&rft.epage=147&rft.pages=136-147&rft.issn=1081-2865&rft.eissn=1741-3028&rft_id=info:doi/10.1177/1081286516673233&rft_dat=%3Csage_hal_p%3E10.1177_1081286516673233%3C/sage_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_sage_id=10.1177_1081286516673233&rfr_iscdi=true