Ellipsoidal capsules in simple shear flow: prolate versus oblate initial shapes
The large deformations of an initially-ellipsoidal capsule in a simple shear flow are studied by coupling a boundary integral method for the internal and external flows and a finite-element method for the capsule wall motion. Oblate and prolate spheroids are considered (initial aspect ratios: 0.5 an...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2011-06, Vol.676, p.318-347 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 347 |
---|---|
container_issue | |
container_start_page | 318 |
container_title | Journal of fluid mechanics |
container_volume | 676 |
creator | WALTER, J. SALSAC, A.-V. BARTHÈS-BIESEL, D. |
description | The large deformations of an initially-ellipsoidal capsule in a simple shear flow are studied by coupling a boundary integral method for the internal and external flows and a finite-element method for the capsule wall motion. Oblate and prolate spheroids are considered (initial aspect ratios: 0.5 and 2) in the case where the internal and external fluids have the same viscosity and the revolution axis of the initial spheroid lies in the shear plane. The influence of the membrane mechanical properties (mechanical law and ratio of shear to area dilatation moduli) on the capsule behaviour is investigated. Two regimes are found depending on the value of a capillary number comparing viscous and elastic forces. At low capillary numbers, the capsule tumbles, behaving mostly like a solid particle. At higher capillary numbers, the capsule has a fluid-like behaviour and oscillates in the shear flow while its membrane continuously rotates around its deformed shape. During the tumbling-to-swinging transition, the capsule transits through an almost circular profile in the shear plane for which a long axis can no longer be defined. The critical transition capillary number is found to depend mainly on the initial shape of the capsule and on its shear modulus, and weakly on the area dilatation modulus. Qualitatively, oblate and prolate capsules are found to behave similarly, particularly at large capillary numbers when the influence of the initial state fades out. However, the capillary number at which the transition occurs is significantly lower for oblate spheroids. |
doi_str_mv | 10.1017/S0022112011000486 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02019760v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0022112011000486</cupid><sourcerecordid>1642260512</sourcerecordid><originalsourceid>FETCH-LOGICAL-c560t-f6fa28da3a19799a6a64701f84144d8f3e7eb14efb926827ef081b22864646643</originalsourceid><addsrcrecordid>eNqFkd9rFDEQxxdR8Kz-Ab4tgmAfVmeyufzwrZTWFg760PocZvcSLyW3u2ZuK_3vzXlHBUUkDyEzn--X72Sq6i3CRwTUn24BhEAUgAgA0qhn1QKlso1Wcvm8Wuzbzb7_snrFfA-ALVi9qG4uUooTj3FNqe5p4jl5ruNQc9xOyde88ZTrkMYfn-spj4l2vn7wmWeux-7XKw5xF4uYNzR5fl29CJTYvzneJ9XXy4u786tmdfPl-vxs1fRLBbsmqEDCrKkltNpaUqSkBgxGopRrE1qvfYfSh84KZYT2AQx2Qhgly1GyPalOD74bSm7KcUv50Y0U3dXZyu1rUL7CagUPWNgPB7YM8H32vHPbyL1PiQY_zuxQSSEULFH8H12WgK0xbVvQd3-g9-OchzK0M8paK4xUBcID1OeROfvwlBXB7Rfn_lpc0bw_GhP3lEKmoY_8JBRSoDHaFK49etO2y3H9zf9O8G_3nz6So9Y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>869992846</pqid></control><display><type>article</type><title>Ellipsoidal capsules in simple shear flow: prolate versus oblate initial shapes</title><source>Cambridge University Press Journals Complete</source><creator>WALTER, J. ; SALSAC, A.-V. ; BARTHÈS-BIESEL, D.</creator><creatorcontrib>WALTER, J. ; SALSAC, A.-V. ; BARTHÈS-BIESEL, D.</creatorcontrib><description>The large deformations of an initially-ellipsoidal capsule in a simple shear flow are studied by coupling a boundary integral method for the internal and external flows and a finite-element method for the capsule wall motion. Oblate and prolate spheroids are considered (initial aspect ratios: 0.5 and 2) in the case where the internal and external fluids have the same viscosity and the revolution axis of the initial spheroid lies in the shear plane. The influence of the membrane mechanical properties (mechanical law and ratio of shear to area dilatation moduli) on the capsule behaviour is investigated. Two regimes are found depending on the value of a capillary number comparing viscous and elastic forces. At low capillary numbers, the capsule tumbles, behaving mostly like a solid particle. At higher capillary numbers, the capsule has a fluid-like behaviour and oscillates in the shear flow while its membrane continuously rotates around its deformed shape. During the tumbling-to-swinging transition, the capsule transits through an almost circular profile in the shear plane for which a long axis can no longer be defined. The critical transition capillary number is found to depend mainly on the initial shape of the capsule and on its shear modulus, and weakly on the area dilatation modulus. Qualitatively, oblate and prolate capsules are found to behave similarly, particularly at large capillary numbers when the influence of the initial state fades out. However, the capillary number at which the transition occurs is significantly lower for oblate spheroids.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/S0022112011000486</identifier><identifier>CODEN: JFLSA7</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Biomechanics ; Boundary layer ; Capillarity ; Chemistry ; Colloidal state and disperse state ; Deformation ; Dilatation ; Exact sciences and technology ; Flow velocity ; Fluid dynamics ; Fluid flow ; Fluid mechanics ; General and physical chemistry ; Mechanics ; Membranes ; Physics ; Planes ; Shear ; Shear flow ; Viscosity</subject><ispartof>Journal of fluid mechanics, 2011-06, Vol.676, p.318-347</ispartof><rights>Copyright © Cambridge University Press 2011</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c560t-f6fa28da3a19799a6a64701f84144d8f3e7eb14efb926827ef081b22864646643</citedby><cites>FETCH-LOGICAL-c560t-f6fa28da3a19799a6a64701f84144d8f3e7eb14efb926827ef081b22864646643</cites><orcidid>0000-0003-4677-8793</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112011000486/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,230,314,780,784,885,27924,27925,55628</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=24218878$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.utc.fr/hal-02019760$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>WALTER, J.</creatorcontrib><creatorcontrib>SALSAC, A.-V.</creatorcontrib><creatorcontrib>BARTHÈS-BIESEL, D.</creatorcontrib><title>Ellipsoidal capsules in simple shear flow: prolate versus oblate initial shapes</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>The large deformations of an initially-ellipsoidal capsule in a simple shear flow are studied by coupling a boundary integral method for the internal and external flows and a finite-element method for the capsule wall motion. Oblate and prolate spheroids are considered (initial aspect ratios: 0.5 and 2) in the case where the internal and external fluids have the same viscosity and the revolution axis of the initial spheroid lies in the shear plane. The influence of the membrane mechanical properties (mechanical law and ratio of shear to area dilatation moduli) on the capsule behaviour is investigated. Two regimes are found depending on the value of a capillary number comparing viscous and elastic forces. At low capillary numbers, the capsule tumbles, behaving mostly like a solid particle. At higher capillary numbers, the capsule has a fluid-like behaviour and oscillates in the shear flow while its membrane continuously rotates around its deformed shape. During the tumbling-to-swinging transition, the capsule transits through an almost circular profile in the shear plane for which a long axis can no longer be defined. The critical transition capillary number is found to depend mainly on the initial shape of the capsule and on its shear modulus, and weakly on the area dilatation modulus. Qualitatively, oblate and prolate capsules are found to behave similarly, particularly at large capillary numbers when the influence of the initial state fades out. However, the capillary number at which the transition occurs is significantly lower for oblate spheroids.</description><subject>Biomechanics</subject><subject>Boundary layer</subject><subject>Capillarity</subject><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Deformation</subject><subject>Dilatation</subject><subject>Exact sciences and technology</subject><subject>Flow velocity</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>General and physical chemistry</subject><subject>Mechanics</subject><subject>Membranes</subject><subject>Physics</subject><subject>Planes</subject><subject>Shear</subject><subject>Shear flow</subject><subject>Viscosity</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkd9rFDEQxxdR8Kz-Ab4tgmAfVmeyufzwrZTWFg760PocZvcSLyW3u2ZuK_3vzXlHBUUkDyEzn--X72Sq6i3CRwTUn24BhEAUgAgA0qhn1QKlso1Wcvm8Wuzbzb7_snrFfA-ALVi9qG4uUooTj3FNqe5p4jl5ruNQc9xOyde88ZTrkMYfn-spj4l2vn7wmWeux-7XKw5xF4uYNzR5fl29CJTYvzneJ9XXy4u786tmdfPl-vxs1fRLBbsmqEDCrKkltNpaUqSkBgxGopRrE1qvfYfSh84KZYT2AQx2Qhgly1GyPalOD74bSm7KcUv50Y0U3dXZyu1rUL7CagUPWNgPB7YM8H32vHPbyL1PiQY_zuxQSSEULFH8H12WgK0xbVvQd3-g9-OchzK0M8paK4xUBcID1OeROfvwlBXB7Rfn_lpc0bw_GhP3lEKmoY_8JBRSoDHaFK49etO2y3H9zf9O8G_3nz6So9Y</recordid><startdate>20110610</startdate><enddate>20110610</enddate><creator>WALTER, J.</creator><creator>SALSAC, A.-V.</creator><creator>BARTHÈS-BIESEL, D.</creator><general>Cambridge University Press</general><general>Cambridge University Press (CUP)</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><scope>7TG</scope><scope>KL.</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-4677-8793</orcidid></search><sort><creationdate>20110610</creationdate><title>Ellipsoidal capsules in simple shear flow: prolate versus oblate initial shapes</title><author>WALTER, J. ; SALSAC, A.-V. ; BARTHÈS-BIESEL, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c560t-f6fa28da3a19799a6a64701f84144d8f3e7eb14efb926827ef081b22864646643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Biomechanics</topic><topic>Boundary layer</topic><topic>Capillarity</topic><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Deformation</topic><topic>Dilatation</topic><topic>Exact sciences and technology</topic><topic>Flow velocity</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>General and physical chemistry</topic><topic>Mechanics</topic><topic>Membranes</topic><topic>Physics</topic><topic>Planes</topic><topic>Shear</topic><topic>Shear flow</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>WALTER, J.</creatorcontrib><creatorcontrib>SALSAC, A.-V.</creatorcontrib><creatorcontrib>BARTHÈS-BIESEL, D.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>WALTER, J.</au><au>SALSAC, A.-V.</au><au>BARTHÈS-BIESEL, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ellipsoidal capsules in simple shear flow: prolate versus oblate initial shapes</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2011-06-10</date><risdate>2011</risdate><volume>676</volume><spage>318</spage><epage>347</epage><pages>318-347</pages><issn>0022-1120</issn><eissn>1469-7645</eissn><coden>JFLSA7</coden><abstract>The large deformations of an initially-ellipsoidal capsule in a simple shear flow are studied by coupling a boundary integral method for the internal and external flows and a finite-element method for the capsule wall motion. Oblate and prolate spheroids are considered (initial aspect ratios: 0.5 and 2) in the case where the internal and external fluids have the same viscosity and the revolution axis of the initial spheroid lies in the shear plane. The influence of the membrane mechanical properties (mechanical law and ratio of shear to area dilatation moduli) on the capsule behaviour is investigated. Two regimes are found depending on the value of a capillary number comparing viscous and elastic forces. At low capillary numbers, the capsule tumbles, behaving mostly like a solid particle. At higher capillary numbers, the capsule has a fluid-like behaviour and oscillates in the shear flow while its membrane continuously rotates around its deformed shape. During the tumbling-to-swinging transition, the capsule transits through an almost circular profile in the shear plane for which a long axis can no longer be defined. The critical transition capillary number is found to depend mainly on the initial shape of the capsule and on its shear modulus, and weakly on the area dilatation modulus. Qualitatively, oblate and prolate capsules are found to behave similarly, particularly at large capillary numbers when the influence of the initial state fades out. However, the capillary number at which the transition occurs is significantly lower for oblate spheroids.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/S0022112011000486</doi><tpages>30</tpages><orcidid>https://orcid.org/0000-0003-4677-8793</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2011-06, Vol.676, p.318-347 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02019760v1 |
source | Cambridge University Press Journals Complete |
subjects | Biomechanics Boundary layer Capillarity Chemistry Colloidal state and disperse state Deformation Dilatation Exact sciences and technology Flow velocity Fluid dynamics Fluid flow Fluid mechanics General and physical chemistry Mechanics Membranes Physics Planes Shear Shear flow Viscosity |
title | Ellipsoidal capsules in simple shear flow: prolate versus oblate initial shapes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T01%3A11%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ellipsoidal%20capsules%20in%20simple%20shear%20flow:%20prolate%20versus%20oblate%20initial%20shapes&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=WALTER,%20J.&rft.date=2011-06-10&rft.volume=676&rft.spage=318&rft.epage=347&rft.pages=318-347&rft.issn=0022-1120&rft.eissn=1469-7645&rft.coden=JFLSA7&rft_id=info:doi/10.1017/S0022112011000486&rft_dat=%3Cproquest_hal_p%3E1642260512%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=869992846&rft_id=info:pmid/&rft_cupid=10_1017_S0022112011000486&rfr_iscdi=true |