A robust region-based active contour for object segmentation in heterogeneous case
In this paper, we propose a new approach using a local version of the region-based active contour for object segmentation in images presenting heterogeneity in both the object of interest and the background. The local version was recently developed to deal with heterogeneous appearances by relying o...
Gespeichert in:
Veröffentlicht in: | Pattern recognition and image analysis 2014, Vol.24 (1), p.24-35 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 35 |
---|---|
container_issue | 1 |
container_start_page | 24 |
container_title | Pattern recognition and image analysis |
container_volume | 24 |
creator | Aitfares, W. Bouyakhf, E. H. Regragui, F. Herbulot, A. Devy, M. |
description | In this paper, we propose a new approach using a local version of the region-based active contour for object segmentation in images presenting heterogeneity in both the object of interest and the background. The local version was recently developed to deal with heterogeneous appearances by relying on extracting the local instead of global image statistics where the local extracted area is defined by using a disk, sketched at each point along the active contour, with a constant radius size inside and outside the contour. However, the use of a constant radius may prevent the active contour getting more information from its neighborhood and thus being trapped by undesired boundaries. To avoid this error segmentation, the local extracted area using our proposed approach is determined based on using two different radii to extract separately the interior and the exterior local information of the active contour. Using synthetic and real images, our approach shows an improvement in term of computation time and outperforms the conventional methods in noisy images presenting heterogeneity in both the object of interest and the background and using inadequate contour initialization. |
doi_str_mv | 10.1134/S1054661814010027 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02018886v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1530992700</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3717-13fa302b30266607db22512e644fed3c7a434a9af37bab32edf23ef7bc4655483</originalsourceid><addsrcrecordid>eNp1kV9LHDEUxQepoF37AXwLSKF9GL03f2ceF7EqLAhqn4dM9madZXZik9kFv71ZR6RU-hAScn7ncJJbFKcI54hCXjwgKKk1VigBAbg5KI5RKVVqjvxLPme53OtHxdeU1gBQYc2Pi_s5i6HdppFFWnVhKFubaMmsG7sdMReGMWwj8yGy0K7JjSzRakPDaMcMs25gTzRSDCsaKGwTc9l9Uhx62yf69r7Pit-_rh4vb8rF3fXt5XxROmHQlCi8FcDbvLTWYJYt5wo5aSk9LYUzVgppa-uFaW0rOC09F-RN66RWSlZiVvyccp9s3zzHbmPjSxNs19zMF83-DjhgVVV6h5n9MbHPMfzZUhqbTZcc9b19692gElDX3ABk9OwfdJ2_YMgvyRSCMFoZkSmcKBdDSpH8RwOEZj-R5tNEsuf7e7JNzvY-2sF16cPIKwUCa5k5PnEpS8OK4l8N_hv-Cnxzl68</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1510376573</pqid></control><display><type>article</type><title>A robust region-based active contour for object segmentation in heterogeneous case</title><source>SpringerNature Journals</source><creator>Aitfares, W. ; Bouyakhf, E. H. ; Regragui, F. ; Herbulot, A. ; Devy, M.</creator><creatorcontrib>Aitfares, W. ; Bouyakhf, E. H. ; Regragui, F. ; Herbulot, A. ; Devy, M.</creatorcontrib><description>In this paper, we propose a new approach using a local version of the region-based active contour for object segmentation in images presenting heterogeneity in both the object of interest and the background. The local version was recently developed to deal with heterogeneous appearances by relying on extracting the local instead of global image statistics where the local extracted area is defined by using a disk, sketched at each point along the active contour, with a constant radius size inside and outside the contour. However, the use of a constant radius may prevent the active contour getting more information from its neighborhood and thus being trapped by undesired boundaries. To avoid this error segmentation, the local extracted area using our proposed approach is determined based on using two different radii to extract separately the interior and the exterior local information of the active contour. Using synthetic and real images, our approach shows an improvement in term of computation time and outperforms the conventional methods in noisy images presenting heterogeneity in both the object of interest and the background and using inadequate contour initialization.</description><identifier>ISSN: 1054-6618</identifier><identifier>EISSN: 1555-6212</identifier><identifier>DOI: 10.1134/S1054661814010027</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Analysis and Understanding of Images ; Applied sciences ; Artificial intelligence ; Boundaries ; Computer Science ; Computer science; control theory; systems ; Energy ; Exact sciences and technology ; Exteriors ; Heterogeneity ; Image Processing and Computer Vision ; Image retrieval ; Methods ; Noise ; Pattern Recognition ; Pattern recognition. Digital image processing. Computational geometry ; Processing ; Representation ; Segmentation ; Shape ; Signal and Image Processing ; Statistics ; Studies</subject><ispartof>Pattern recognition and image analysis, 2014, Vol.24 (1), p.24-35</ispartof><rights>Pleiades Publishing, Ltd. 2014</rights><rights>2015 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3717-13fa302b30266607db22512e644fed3c7a434a9af37bab32edf23ef7bc4655483</citedby><cites>FETCH-LOGICAL-c3717-13fa302b30266607db22512e644fed3c7a434a9af37bab32edf23ef7bc4655483</cites><orcidid>0000-0002-8377-6474</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1054661814010027$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1054661814010027$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28503194$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://laas.hal.science/hal-02018886$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Aitfares, W.</creatorcontrib><creatorcontrib>Bouyakhf, E. H.</creatorcontrib><creatorcontrib>Regragui, F.</creatorcontrib><creatorcontrib>Herbulot, A.</creatorcontrib><creatorcontrib>Devy, M.</creatorcontrib><title>A robust region-based active contour for object segmentation in heterogeneous case</title><title>Pattern recognition and image analysis</title><addtitle>Pattern Recognit. Image Anal</addtitle><description>In this paper, we propose a new approach using a local version of the region-based active contour for object segmentation in images presenting heterogeneity in both the object of interest and the background. The local version was recently developed to deal with heterogeneous appearances by relying on extracting the local instead of global image statistics where the local extracted area is defined by using a disk, sketched at each point along the active contour, with a constant radius size inside and outside the contour. However, the use of a constant radius may prevent the active contour getting more information from its neighborhood and thus being trapped by undesired boundaries. To avoid this error segmentation, the local extracted area using our proposed approach is determined based on using two different radii to extract separately the interior and the exterior local information of the active contour. Using synthetic and real images, our approach shows an improvement in term of computation time and outperforms the conventional methods in noisy images presenting heterogeneity in both the object of interest and the background and using inadequate contour initialization.</description><subject>Analysis and Understanding of Images</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Boundaries</subject><subject>Computer Science</subject><subject>Computer science; control theory; systems</subject><subject>Energy</subject><subject>Exact sciences and technology</subject><subject>Exteriors</subject><subject>Heterogeneity</subject><subject>Image Processing and Computer Vision</subject><subject>Image retrieval</subject><subject>Methods</subject><subject>Noise</subject><subject>Pattern Recognition</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Processing</subject><subject>Representation</subject><subject>Segmentation</subject><subject>Shape</subject><subject>Signal and Image Processing</subject><subject>Statistics</subject><subject>Studies</subject><issn>1054-6618</issn><issn>1555-6212</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kV9LHDEUxQepoF37AXwLSKF9GL03f2ceF7EqLAhqn4dM9madZXZik9kFv71ZR6RU-hAScn7ncJJbFKcI54hCXjwgKKk1VigBAbg5KI5RKVVqjvxLPme53OtHxdeU1gBQYc2Pi_s5i6HdppFFWnVhKFubaMmsG7sdMReGMWwj8yGy0K7JjSzRakPDaMcMs25gTzRSDCsaKGwTc9l9Uhx62yf69r7Pit-_rh4vb8rF3fXt5XxROmHQlCi8FcDbvLTWYJYt5wo5aSk9LYUzVgppa-uFaW0rOC09F-RN66RWSlZiVvyccp9s3zzHbmPjSxNs19zMF83-DjhgVVV6h5n9MbHPMfzZUhqbTZcc9b19692gElDX3ABk9OwfdJ2_YMgvyRSCMFoZkSmcKBdDSpH8RwOEZj-R5tNEsuf7e7JNzvY-2sF16cPIKwUCa5k5PnEpS8OK4l8N_hv-Cnxzl68</recordid><startdate>2014</startdate><enddate>2014</enddate><creator>Aitfares, W.</creator><creator>Bouyakhf, E. H.</creator><creator>Regragui, F.</creator><creator>Herbulot, A.</creator><creator>Devy, M.</creator><general>Springer US</general><general>Pleiades</general><general>Springer Nature B.V</general><general>MAIK Nauka/Interperiodica (МАИК Наука/Интерпериодика)</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-8377-6474</orcidid></search><sort><creationdate>2014</creationdate><title>A robust region-based active contour for object segmentation in heterogeneous case</title><author>Aitfares, W. ; Bouyakhf, E. H. ; Regragui, F. ; Herbulot, A. ; Devy, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3717-13fa302b30266607db22512e644fed3c7a434a9af37bab32edf23ef7bc4655483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Analysis and Understanding of Images</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Boundaries</topic><topic>Computer Science</topic><topic>Computer science; control theory; systems</topic><topic>Energy</topic><topic>Exact sciences and technology</topic><topic>Exteriors</topic><topic>Heterogeneity</topic><topic>Image Processing and Computer Vision</topic><topic>Image retrieval</topic><topic>Methods</topic><topic>Noise</topic><topic>Pattern Recognition</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Processing</topic><topic>Representation</topic><topic>Segmentation</topic><topic>Shape</topic><topic>Signal and Image Processing</topic><topic>Statistics</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aitfares, W.</creatorcontrib><creatorcontrib>Bouyakhf, E. H.</creatorcontrib><creatorcontrib>Regragui, F.</creatorcontrib><creatorcontrib>Herbulot, A.</creatorcontrib><creatorcontrib>Devy, M.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Pattern recognition and image analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aitfares, W.</au><au>Bouyakhf, E. H.</au><au>Regragui, F.</au><au>Herbulot, A.</au><au>Devy, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A robust region-based active contour for object segmentation in heterogeneous case</atitle><jtitle>Pattern recognition and image analysis</jtitle><stitle>Pattern Recognit. Image Anal</stitle><date>2014</date><risdate>2014</risdate><volume>24</volume><issue>1</issue><spage>24</spage><epage>35</epage><pages>24-35</pages><issn>1054-6618</issn><eissn>1555-6212</eissn><abstract>In this paper, we propose a new approach using a local version of the region-based active contour for object segmentation in images presenting heterogeneity in both the object of interest and the background. The local version was recently developed to deal with heterogeneous appearances by relying on extracting the local instead of global image statistics where the local extracted area is defined by using a disk, sketched at each point along the active contour, with a constant radius size inside and outside the contour. However, the use of a constant radius may prevent the active contour getting more information from its neighborhood and thus being trapped by undesired boundaries. To avoid this error segmentation, the local extracted area using our proposed approach is determined based on using two different radii to extract separately the interior and the exterior local information of the active contour. Using synthetic and real images, our approach shows an improvement in term of computation time and outperforms the conventional methods in noisy images presenting heterogeneity in both the object of interest and the background and using inadequate contour initialization.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1134/S1054661814010027</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8377-6474</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1054-6618 |
ispartof | Pattern recognition and image analysis, 2014, Vol.24 (1), p.24-35 |
issn | 1054-6618 1555-6212 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02018886v1 |
source | SpringerNature Journals |
subjects | Analysis and Understanding of Images Applied sciences Artificial intelligence Boundaries Computer Science Computer science control theory systems Energy Exact sciences and technology Exteriors Heterogeneity Image Processing and Computer Vision Image retrieval Methods Noise Pattern Recognition Pattern recognition. Digital image processing. Computational geometry Processing Representation Segmentation Shape Signal and Image Processing Statistics Studies |
title | A robust region-based active contour for object segmentation in heterogeneous case |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T17%3A04%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20robust%20region-based%20active%20contour%20for%20object%20segmentation%20in%20heterogeneous%20case&rft.jtitle=Pattern%20recognition%20and%20image%20analysis&rft.au=Aitfares,%20W.&rft.date=2014&rft.volume=24&rft.issue=1&rft.spage=24&rft.epage=35&rft.pages=24-35&rft.issn=1054-6618&rft.eissn=1555-6212&rft_id=info:doi/10.1134/S1054661814010027&rft_dat=%3Cproquest_hal_p%3E1530992700%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1510376573&rft_id=info:pmid/&rfr_iscdi=true |