Influence of finite-size and edge effects on the exchange-bias properties of ferromagnetic/antiferromagnetic nanodots: Granular Monte Carlo investigation

In this paper, we investigate exchange-biased square nanodots whose lateral sizes range between 130 and 500 nm, in comparison with continuous films by kinetic Monte Carlo simulations. We use a granular model which takes into account disordered interfacial phases by considering less stable magnetic g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2019-02, Vol.99 (5), p.054410, Article 054410
Hauptverfasser: Kanso, Haydar, Patte, Renaud, Baltz, Vincent, Ledue, Denis
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page 054410
container_title Physical review. B
container_volume 99
creator Kanso, Haydar
Patte, Renaud
Baltz, Vincent
Ledue, Denis
description In this paper, we investigate exchange-biased square nanodots whose lateral sizes range between 130 and 500 nm, in comparison with continuous films by kinetic Monte Carlo simulations. We use a granular model which takes into account disordered interfacial phases by considering less stable magnetic grains at the interface in the antiferromagnetic (AF) layer. We further model the effect of the nanofabrication process by considering grains with reduced surfaces at the edges, due to grain cutting. Since less stable grains at the nanodot edges in the AF layer have been experimentally evidenced, we assumed a weaker anisotropy for the grains which are in the AF layer at the dot edges. Our results evidence two different mechanisms of the ferromagnetic (F) layer reversal depending on the magnitude of the coupling between F grains. In the weak coupling regime relative to the anisotropy, the exchange field is independent of the coupling and no variability from one nanodot to another is observed. By contrast, in the strong coupling regime, the exchange field depends on the coupling and it shows a high variability from one nanodot to another. Our model also well explain some experimental features observed in NiFe/IrMn nanodots (for various lateral sizes) and continuous films, at various measurement temperatures and various AF thicknesses. Finally, our model explains a long lasting issue about why the exchange field in nanodots can be either smaller or larger than in continuous films.
doi_str_mv 10.1103/PhysRevB.99.054410
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02015777v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2207144276</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-e20702704f60a98a12611c55cf4255c09686f411a46503679eb6c9046dceb3023</originalsourceid><addsrcrecordid>eNpVUU1rGzEQXUIDMUn-QE-CnnpYe6TVaqPeUtN8gEtCSM9iLI9shY3kSrKJ80_6b7uJW0Mu8_F483jDq6rPHMacQzO5X-3yA22_j7UeQyslh6NqJKTStdZKfzrMLZxU5zk_AQBXoDvQo-rPbXD9hoIlFh1zPvhCdfavxDAsGC2WxMg5siWzGFhZDeuLXWFYUj33mNk6xTWl4im_31NK8RmXgYq3EwzFf0BYwBAXseRv7Dph2PSY2M8YCrEppj4yH7aUi19i8TGcVccO-0zn__pp9evqx-P0pp7dXd9OL2e1bdqm1CSgA9GBdApQXyAXinPbttZJMVTQ6kI5yTlK1UKjOk1zZTVItbA0b0A0p9XXve4Ke7NO_hnTzkT05uZyZt4wEMDbruu2fOB-2XOHt39vBq_mKW5SGOwZMfjgUopODSyxZ9kUc07kDrIczFti5n9iRmuzT6z5C81vjGc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2207144276</pqid></control><display><type>article</type><title>Influence of finite-size and edge effects on the exchange-bias properties of ferromagnetic/antiferromagnetic nanodots: Granular Monte Carlo investigation</title><source>American Physical Society Journals</source><creator>Kanso, Haydar ; Patte, Renaud ; Baltz, Vincent ; Ledue, Denis</creator><creatorcontrib>Kanso, Haydar ; Patte, Renaud ; Baltz, Vincent ; Ledue, Denis</creatorcontrib><description>In this paper, we investigate exchange-biased square nanodots whose lateral sizes range between 130 and 500 nm, in comparison with continuous films by kinetic Monte Carlo simulations. We use a granular model which takes into account disordered interfacial phases by considering less stable magnetic grains at the interface in the antiferromagnetic (AF) layer. We further model the effect of the nanofabrication process by considering grains with reduced surfaces at the edges, due to grain cutting. Since less stable grains at the nanodot edges in the AF layer have been experimentally evidenced, we assumed a weaker anisotropy for the grains which are in the AF layer at the dot edges. Our results evidence two different mechanisms of the ferromagnetic (F) layer reversal depending on the magnitude of the coupling between F grains. In the weak coupling regime relative to the anisotropy, the exchange field is independent of the coupling and no variability from one nanodot to another is observed. By contrast, in the strong coupling regime, the exchange field depends on the coupling and it shows a high variability from one nanodot to another. Our model also well explain some experimental features observed in NiFe/IrMn nanodots (for various lateral sizes) and continuous films, at various measurement temperatures and various AF thicknesses. Finally, our model explains a long lasting issue about why the exchange field in nanodots can be either smaller or larger than in continuous films.</description><identifier>ISSN: 2469-9950</identifier><identifier>ISSN: 1098-0121</identifier><identifier>EISSN: 2469-9969</identifier><identifier>EISSN: 1550-235X</identifier><identifier>DOI: 10.1103/PhysRevB.99.054410</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Anisotropy ; Antiferromagnetism ; Computer simulation ; Condensed Matter ; Coupling ; Edge effect ; Exchanging ; Ferromagnetism ; Grains ; Iron compounds ; Nanofabrication ; Nickel compounds ; Physics</subject><ispartof>Physical review. B, 2019-02, Vol.99 (5), p.054410, Article 054410</ispartof><rights>Copyright American Physical Society Feb 1, 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-e20702704f60a98a12611c55cf4255c09686f411a46503679eb6c9046dceb3023</citedby><cites>FETCH-LOGICAL-c353t-e20702704f60a98a12611c55cf4255c09686f411a46503679eb6c9046dceb3023</cites><orcidid>0000-0002-7637-1938 ; 0000-0002-8274-2483</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02015777$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Kanso, Haydar</creatorcontrib><creatorcontrib>Patte, Renaud</creatorcontrib><creatorcontrib>Baltz, Vincent</creatorcontrib><creatorcontrib>Ledue, Denis</creatorcontrib><title>Influence of finite-size and edge effects on the exchange-bias properties of ferromagnetic/antiferromagnetic nanodots: Granular Monte Carlo investigation</title><title>Physical review. B</title><description>In this paper, we investigate exchange-biased square nanodots whose lateral sizes range between 130 and 500 nm, in comparison with continuous films by kinetic Monte Carlo simulations. We use a granular model which takes into account disordered interfacial phases by considering less stable magnetic grains at the interface in the antiferromagnetic (AF) layer. We further model the effect of the nanofabrication process by considering grains with reduced surfaces at the edges, due to grain cutting. Since less stable grains at the nanodot edges in the AF layer have been experimentally evidenced, we assumed a weaker anisotropy for the grains which are in the AF layer at the dot edges. Our results evidence two different mechanisms of the ferromagnetic (F) layer reversal depending on the magnitude of the coupling between F grains. In the weak coupling regime relative to the anisotropy, the exchange field is independent of the coupling and no variability from one nanodot to another is observed. By contrast, in the strong coupling regime, the exchange field depends on the coupling and it shows a high variability from one nanodot to another. Our model also well explain some experimental features observed in NiFe/IrMn nanodots (for various lateral sizes) and continuous films, at various measurement temperatures and various AF thicknesses. Finally, our model explains a long lasting issue about why the exchange field in nanodots can be either smaller or larger than in continuous films.</description><subject>Anisotropy</subject><subject>Antiferromagnetism</subject><subject>Computer simulation</subject><subject>Condensed Matter</subject><subject>Coupling</subject><subject>Edge effect</subject><subject>Exchanging</subject><subject>Ferromagnetism</subject><subject>Grains</subject><subject>Iron compounds</subject><subject>Nanofabrication</subject><subject>Nickel compounds</subject><subject>Physics</subject><issn>2469-9950</issn><issn>1098-0121</issn><issn>2469-9969</issn><issn>1550-235X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpVUU1rGzEQXUIDMUn-QE-CnnpYe6TVaqPeUtN8gEtCSM9iLI9shY3kSrKJ80_6b7uJW0Mu8_F483jDq6rPHMacQzO5X-3yA22_j7UeQyslh6NqJKTStdZKfzrMLZxU5zk_AQBXoDvQo-rPbXD9hoIlFh1zPvhCdfavxDAsGC2WxMg5siWzGFhZDeuLXWFYUj33mNk6xTWl4im_31NK8RmXgYq3EwzFf0BYwBAXseRv7Dph2PSY2M8YCrEppj4yH7aUi19i8TGcVccO-0zn__pp9evqx-P0pp7dXd9OL2e1bdqm1CSgA9GBdApQXyAXinPbttZJMVTQ6kI5yTlK1UKjOk1zZTVItbA0b0A0p9XXve4Ke7NO_hnTzkT05uZyZt4wEMDbruu2fOB-2XOHt39vBq_mKW5SGOwZMfjgUopODSyxZ9kUc07kDrIczFti5n9iRmuzT6z5C81vjGc</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Kanso, Haydar</creator><creator>Patte, Renaud</creator><creator>Baltz, Vincent</creator><creator>Ledue, Denis</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-7637-1938</orcidid><orcidid>https://orcid.org/0000-0002-8274-2483</orcidid></search><sort><creationdate>20190201</creationdate><title>Influence of finite-size and edge effects on the exchange-bias properties of ferromagnetic/antiferromagnetic nanodots: Granular Monte Carlo investigation</title><author>Kanso, Haydar ; Patte, Renaud ; Baltz, Vincent ; Ledue, Denis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-e20702704f60a98a12611c55cf4255c09686f411a46503679eb6c9046dceb3023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anisotropy</topic><topic>Antiferromagnetism</topic><topic>Computer simulation</topic><topic>Condensed Matter</topic><topic>Coupling</topic><topic>Edge effect</topic><topic>Exchanging</topic><topic>Ferromagnetism</topic><topic>Grains</topic><topic>Iron compounds</topic><topic>Nanofabrication</topic><topic>Nickel compounds</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kanso, Haydar</creatorcontrib><creatorcontrib>Patte, Renaud</creatorcontrib><creatorcontrib>Baltz, Vincent</creatorcontrib><creatorcontrib>Ledue, Denis</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kanso, Haydar</au><au>Patte, Renaud</au><au>Baltz, Vincent</au><au>Ledue, Denis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of finite-size and edge effects on the exchange-bias properties of ferromagnetic/antiferromagnetic nanodots: Granular Monte Carlo investigation</atitle><jtitle>Physical review. B</jtitle><date>2019-02-01</date><risdate>2019</risdate><volume>99</volume><issue>5</issue><spage>054410</spage><pages>054410-</pages><artnum>054410</artnum><issn>2469-9950</issn><issn>1098-0121</issn><eissn>2469-9969</eissn><eissn>1550-235X</eissn><abstract>In this paper, we investigate exchange-biased square nanodots whose lateral sizes range between 130 and 500 nm, in comparison with continuous films by kinetic Monte Carlo simulations. We use a granular model which takes into account disordered interfacial phases by considering less stable magnetic grains at the interface in the antiferromagnetic (AF) layer. We further model the effect of the nanofabrication process by considering grains with reduced surfaces at the edges, due to grain cutting. Since less stable grains at the nanodot edges in the AF layer have been experimentally evidenced, we assumed a weaker anisotropy for the grains which are in the AF layer at the dot edges. Our results evidence two different mechanisms of the ferromagnetic (F) layer reversal depending on the magnitude of the coupling between F grains. In the weak coupling regime relative to the anisotropy, the exchange field is independent of the coupling and no variability from one nanodot to another is observed. By contrast, in the strong coupling regime, the exchange field depends on the coupling and it shows a high variability from one nanodot to another. Our model also well explain some experimental features observed in NiFe/IrMn nanodots (for various lateral sizes) and continuous films, at various measurement temperatures and various AF thicknesses. Finally, our model explains a long lasting issue about why the exchange field in nanodots can be either smaller or larger than in continuous films.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.99.054410</doi><orcidid>https://orcid.org/0000-0002-7637-1938</orcidid><orcidid>https://orcid.org/0000-0002-8274-2483</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2019-02, Vol.99 (5), p.054410, Article 054410
issn 2469-9950
1098-0121
2469-9969
1550-235X
language eng
recordid cdi_hal_primary_oai_HAL_hal_02015777v1
source American Physical Society Journals
subjects Anisotropy
Antiferromagnetism
Computer simulation
Condensed Matter
Coupling
Edge effect
Exchanging
Ferromagnetism
Grains
Iron compounds
Nanofabrication
Nickel compounds
Physics
title Influence of finite-size and edge effects on the exchange-bias properties of ferromagnetic/antiferromagnetic nanodots: Granular Monte Carlo investigation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T11%3A43%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20finite-size%20and%20edge%20effects%20on%20the%20exchange-bias%20properties%20of%20ferromagnetic/antiferromagnetic%20nanodots:%20Granular%20Monte%20Carlo%20investigation&rft.jtitle=Physical%20review.%20B&rft.au=Kanso,%20Haydar&rft.date=2019-02-01&rft.volume=99&rft.issue=5&rft.spage=054410&rft.pages=054410-&rft.artnum=054410&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.99.054410&rft_dat=%3Cproquest_hal_p%3E2207144276%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2207144276&rft_id=info:pmid/&rfr_iscdi=true