Influence of finite-size and edge effects on the exchange-bias properties of ferromagnetic/antiferromagnetic nanodots: Granular Monte Carlo investigation
In this paper, we investigate exchange-biased square nanodots whose lateral sizes range between 130 and 500 nm, in comparison with continuous films by kinetic Monte Carlo simulations. We use a granular model which takes into account disordered interfacial phases by considering less stable magnetic g...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2019-02, Vol.99 (5), p.054410, Article 054410 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | 054410 |
container_title | Physical review. B |
container_volume | 99 |
creator | Kanso, Haydar Patte, Renaud Baltz, Vincent Ledue, Denis |
description | In this paper, we investigate exchange-biased square nanodots whose lateral sizes range between 130 and 500 nm, in comparison with continuous films by kinetic Monte Carlo simulations. We use a granular model which takes into account disordered interfacial phases by considering less stable magnetic grains at the interface in the antiferromagnetic (AF) layer. We further model the effect of the nanofabrication process by considering grains with reduced surfaces at the edges, due to grain cutting. Since less stable grains at the nanodot edges in the AF layer have been experimentally evidenced, we assumed a weaker anisotropy for the grains which are in the AF layer at the dot edges. Our results evidence two different mechanisms of the ferromagnetic (F) layer reversal depending on the magnitude of the coupling between F grains. In the weak coupling regime relative to the anisotropy, the exchange field is independent of the coupling and no variability from one nanodot to another is observed. By contrast, in the strong coupling regime, the exchange field depends on the coupling and it shows a high variability from one nanodot to another. Our model also well explain some experimental features observed in NiFe/IrMn nanodots (for various lateral sizes) and continuous films, at various measurement temperatures and various AF thicknesses. Finally, our model explains a long lasting issue about why the exchange field in nanodots can be either smaller or larger than in continuous films. |
doi_str_mv | 10.1103/PhysRevB.99.054410 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02015777v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2207144276</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-e20702704f60a98a12611c55cf4255c09686f411a46503679eb6c9046dceb3023</originalsourceid><addsrcrecordid>eNpVUU1rGzEQXUIDMUn-QE-CnnpYe6TVaqPeUtN8gEtCSM9iLI9shY3kSrKJ80_6b7uJW0Mu8_F483jDq6rPHMacQzO5X-3yA22_j7UeQyslh6NqJKTStdZKfzrMLZxU5zk_AQBXoDvQo-rPbXD9hoIlFh1zPvhCdfavxDAsGC2WxMg5siWzGFhZDeuLXWFYUj33mNk6xTWl4im_31NK8RmXgYq3EwzFf0BYwBAXseRv7Dph2PSY2M8YCrEppj4yH7aUi19i8TGcVccO-0zn__pp9evqx-P0pp7dXd9OL2e1bdqm1CSgA9GBdApQXyAXinPbttZJMVTQ6kI5yTlK1UKjOk1zZTVItbA0b0A0p9XXve4Ke7NO_hnTzkT05uZyZt4wEMDbruu2fOB-2XOHt39vBq_mKW5SGOwZMfjgUopODSyxZ9kUc07kDrIczFti5n9iRmuzT6z5C81vjGc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2207144276</pqid></control><display><type>article</type><title>Influence of finite-size and edge effects on the exchange-bias properties of ferromagnetic/antiferromagnetic nanodots: Granular Monte Carlo investigation</title><source>American Physical Society Journals</source><creator>Kanso, Haydar ; Patte, Renaud ; Baltz, Vincent ; Ledue, Denis</creator><creatorcontrib>Kanso, Haydar ; Patte, Renaud ; Baltz, Vincent ; Ledue, Denis</creatorcontrib><description>In this paper, we investigate exchange-biased square nanodots whose lateral sizes range between 130 and 500 nm, in comparison with continuous films by kinetic Monte Carlo simulations. We use a granular model which takes into account disordered interfacial phases by considering less stable magnetic grains at the interface in the antiferromagnetic (AF) layer. We further model the effect of the nanofabrication process by considering grains with reduced surfaces at the edges, due to grain cutting. Since less stable grains at the nanodot edges in the AF layer have been experimentally evidenced, we assumed a weaker anisotropy for the grains which are in the AF layer at the dot edges. Our results evidence two different mechanisms of the ferromagnetic (F) layer reversal depending on the magnitude of the coupling between F grains. In the weak coupling regime relative to the anisotropy, the exchange field is independent of the coupling and no variability from one nanodot to another is observed. By contrast, in the strong coupling regime, the exchange field depends on the coupling and it shows a high variability from one nanodot to another. Our model also well explain some experimental features observed in NiFe/IrMn nanodots (for various lateral sizes) and continuous films, at various measurement temperatures and various AF thicknesses. Finally, our model explains a long lasting issue about why the exchange field in nanodots can be either smaller or larger than in continuous films.</description><identifier>ISSN: 2469-9950</identifier><identifier>ISSN: 1098-0121</identifier><identifier>EISSN: 2469-9969</identifier><identifier>EISSN: 1550-235X</identifier><identifier>DOI: 10.1103/PhysRevB.99.054410</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Anisotropy ; Antiferromagnetism ; Computer simulation ; Condensed Matter ; Coupling ; Edge effect ; Exchanging ; Ferromagnetism ; Grains ; Iron compounds ; Nanofabrication ; Nickel compounds ; Physics</subject><ispartof>Physical review. B, 2019-02, Vol.99 (5), p.054410, Article 054410</ispartof><rights>Copyright American Physical Society Feb 1, 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-e20702704f60a98a12611c55cf4255c09686f411a46503679eb6c9046dceb3023</citedby><cites>FETCH-LOGICAL-c353t-e20702704f60a98a12611c55cf4255c09686f411a46503679eb6c9046dceb3023</cites><orcidid>0000-0002-7637-1938 ; 0000-0002-8274-2483</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02015777$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Kanso, Haydar</creatorcontrib><creatorcontrib>Patte, Renaud</creatorcontrib><creatorcontrib>Baltz, Vincent</creatorcontrib><creatorcontrib>Ledue, Denis</creatorcontrib><title>Influence of finite-size and edge effects on the exchange-bias properties of ferromagnetic/antiferromagnetic nanodots: Granular Monte Carlo investigation</title><title>Physical review. B</title><description>In this paper, we investigate exchange-biased square nanodots whose lateral sizes range between 130 and 500 nm, in comparison with continuous films by kinetic Monte Carlo simulations. We use a granular model which takes into account disordered interfacial phases by considering less stable magnetic grains at the interface in the antiferromagnetic (AF) layer. We further model the effect of the nanofabrication process by considering grains with reduced surfaces at the edges, due to grain cutting. Since less stable grains at the nanodot edges in the AF layer have been experimentally evidenced, we assumed a weaker anisotropy for the grains which are in the AF layer at the dot edges. Our results evidence two different mechanisms of the ferromagnetic (F) layer reversal depending on the magnitude of the coupling between F grains. In the weak coupling regime relative to the anisotropy, the exchange field is independent of the coupling and no variability from one nanodot to another is observed. By contrast, in the strong coupling regime, the exchange field depends on the coupling and it shows a high variability from one nanodot to another. Our model also well explain some experimental features observed in NiFe/IrMn nanodots (for various lateral sizes) and continuous films, at various measurement temperatures and various AF thicknesses. Finally, our model explains a long lasting issue about why the exchange field in nanodots can be either smaller or larger than in continuous films.</description><subject>Anisotropy</subject><subject>Antiferromagnetism</subject><subject>Computer simulation</subject><subject>Condensed Matter</subject><subject>Coupling</subject><subject>Edge effect</subject><subject>Exchanging</subject><subject>Ferromagnetism</subject><subject>Grains</subject><subject>Iron compounds</subject><subject>Nanofabrication</subject><subject>Nickel compounds</subject><subject>Physics</subject><issn>2469-9950</issn><issn>1098-0121</issn><issn>2469-9969</issn><issn>1550-235X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpVUU1rGzEQXUIDMUn-QE-CnnpYe6TVaqPeUtN8gEtCSM9iLI9shY3kSrKJ80_6b7uJW0Mu8_F483jDq6rPHMacQzO5X-3yA22_j7UeQyslh6NqJKTStdZKfzrMLZxU5zk_AQBXoDvQo-rPbXD9hoIlFh1zPvhCdfavxDAsGC2WxMg5siWzGFhZDeuLXWFYUj33mNk6xTWl4im_31NK8RmXgYq3EwzFf0BYwBAXseRv7Dph2PSY2M8YCrEppj4yH7aUi19i8TGcVccO-0zn__pp9evqx-P0pp7dXd9OL2e1bdqm1CSgA9GBdApQXyAXinPbttZJMVTQ6kI5yTlK1UKjOk1zZTVItbA0b0A0p9XXve4Ke7NO_hnTzkT05uZyZt4wEMDbruu2fOB-2XOHt39vBq_mKW5SGOwZMfjgUopODSyxZ9kUc07kDrIczFti5n9iRmuzT6z5C81vjGc</recordid><startdate>20190201</startdate><enddate>20190201</enddate><creator>Kanso, Haydar</creator><creator>Patte, Renaud</creator><creator>Baltz, Vincent</creator><creator>Ledue, Denis</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-7637-1938</orcidid><orcidid>https://orcid.org/0000-0002-8274-2483</orcidid></search><sort><creationdate>20190201</creationdate><title>Influence of finite-size and edge effects on the exchange-bias properties of ferromagnetic/antiferromagnetic nanodots: Granular Monte Carlo investigation</title><author>Kanso, Haydar ; Patte, Renaud ; Baltz, Vincent ; Ledue, Denis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-e20702704f60a98a12611c55cf4255c09686f411a46503679eb6c9046dceb3023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Anisotropy</topic><topic>Antiferromagnetism</topic><topic>Computer simulation</topic><topic>Condensed Matter</topic><topic>Coupling</topic><topic>Edge effect</topic><topic>Exchanging</topic><topic>Ferromagnetism</topic><topic>Grains</topic><topic>Iron compounds</topic><topic>Nanofabrication</topic><topic>Nickel compounds</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kanso, Haydar</creatorcontrib><creatorcontrib>Patte, Renaud</creatorcontrib><creatorcontrib>Baltz, Vincent</creatorcontrib><creatorcontrib>Ledue, Denis</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kanso, Haydar</au><au>Patte, Renaud</au><au>Baltz, Vincent</au><au>Ledue, Denis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of finite-size and edge effects on the exchange-bias properties of ferromagnetic/antiferromagnetic nanodots: Granular Monte Carlo investigation</atitle><jtitle>Physical review. B</jtitle><date>2019-02-01</date><risdate>2019</risdate><volume>99</volume><issue>5</issue><spage>054410</spage><pages>054410-</pages><artnum>054410</artnum><issn>2469-9950</issn><issn>1098-0121</issn><eissn>2469-9969</eissn><eissn>1550-235X</eissn><abstract>In this paper, we investigate exchange-biased square nanodots whose lateral sizes range between 130 and 500 nm, in comparison with continuous films by kinetic Monte Carlo simulations. We use a granular model which takes into account disordered interfacial phases by considering less stable magnetic grains at the interface in the antiferromagnetic (AF) layer. We further model the effect of the nanofabrication process by considering grains with reduced surfaces at the edges, due to grain cutting. Since less stable grains at the nanodot edges in the AF layer have been experimentally evidenced, we assumed a weaker anisotropy for the grains which are in the AF layer at the dot edges. Our results evidence two different mechanisms of the ferromagnetic (F) layer reversal depending on the magnitude of the coupling between F grains. In the weak coupling regime relative to the anisotropy, the exchange field is independent of the coupling and no variability from one nanodot to another is observed. By contrast, in the strong coupling regime, the exchange field depends on the coupling and it shows a high variability from one nanodot to another. Our model also well explain some experimental features observed in NiFe/IrMn nanodots (for various lateral sizes) and continuous films, at various measurement temperatures and various AF thicknesses. Finally, our model explains a long lasting issue about why the exchange field in nanodots can be either smaller or larger than in continuous films.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevB.99.054410</doi><orcidid>https://orcid.org/0000-0002-7637-1938</orcidid><orcidid>https://orcid.org/0000-0002-8274-2483</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-9950 |
ispartof | Physical review. B, 2019-02, Vol.99 (5), p.054410, Article 054410 |
issn | 2469-9950 1098-0121 2469-9969 1550-235X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02015777v1 |
source | American Physical Society Journals |
subjects | Anisotropy Antiferromagnetism Computer simulation Condensed Matter Coupling Edge effect Exchanging Ferromagnetism Grains Iron compounds Nanofabrication Nickel compounds Physics |
title | Influence of finite-size and edge effects on the exchange-bias properties of ferromagnetic/antiferromagnetic nanodots: Granular Monte Carlo investigation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T11%3A43%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20finite-size%20and%20edge%20effects%20on%20the%20exchange-bias%20properties%20of%20ferromagnetic/antiferromagnetic%20nanodots:%20Granular%20Monte%20Carlo%20investigation&rft.jtitle=Physical%20review.%20B&rft.au=Kanso,%20Haydar&rft.date=2019-02-01&rft.volume=99&rft.issue=5&rft.spage=054410&rft.pages=054410-&rft.artnum=054410&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.99.054410&rft_dat=%3Cproquest_hal_p%3E2207144276%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2207144276&rft_id=info:pmid/&rfr_iscdi=true |