Lung Thermal Transfer System Identification With Fractional Models

System identification through fractional models is proposed for modeling thermal transfers in the lungs. In general, during open-heart surgery, an extracorporeal circulation is carried out on the patient. First, the lungs are disconnected from the circulatory system so that an artificial heart/lung...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on control systems technology 2020-01, Vol.28 (1), p.172-182
Hauptverfasser: Victor, Stephane, Melchior, Pierre, Pellet, Mathieu, Oustaloup, Alain
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 182
container_issue 1
container_start_page 172
container_title IEEE transactions on control systems technology
container_volume 28
creator Victor, Stephane
Melchior, Pierre
Pellet, Mathieu
Oustaloup, Alain
description System identification through fractional models is proposed for modeling thermal transfers in the lungs. In general, during open-heart surgery, an extracorporeal circulation is carried out on the patient. First, the lungs are disconnected from the circulatory system so that an artificial heart/lung machine can be plugged on the bloodstream. Pulmonary cells die when they are no more supplied with fresh blood, which may result in postoperative respiratory complications for the patient. Also, bronchial hypothermia is carried out to protect the lungs. Indeed, cooling the lung organ helps slowing down its deterioration. Unfortunately, the lung thermal properties are not well known yet; therefore, mathematical models are useful and needed in order to improve the knowledge of these organs. As proved by several previous works, fractional models are well suited to model the dynamics of fractal systems and to model thermal systems, thanks to its model parameter compactness but also thanks to the solving of the heat equation whose analytical result reveals a fractional differentiation operator of order 0.5. System identification results are provided on real data measured on sheep lungs. Thus, this paper studies the comparison between a rational model and two kinds of fractional models, a classic one and another one using the Havriliak-Negami function. Time-domain and frequency-domain analysis are provided, showing the efficiency of fractional models, but more precisely of Havriliak-Negami transfer functions.
doi_str_mv 10.1109/TCST.2018.2877606
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02010639v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8567929</ieee_id><sourcerecordid>2332190660</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-4c3c106a884875510636369623fa913da122565adf3f41ebf1e9d304b2f4310c3</originalsourceid><addsrcrecordid>eNo9kMFLwzAYxYMoOKd_gHgpePLQmS9p0uQ4x-YGFQ-reAxZm7iOrp1JJ-y_N6Vj5JB84fce73sIPQKeAGD5ms_W-YRgEBMi0pRjfoVGwJiIseDsOrwxpzFnlN-iO-93GEPCSDpCb9mx-YnyrXF7XUe50423xkXrk-_MPlqVpukqWxW6q9om-q66bbRwuuingH-0pan9Pbqxuvbm4XyP0ddins-Wcfb5vppNs7igJO3ipKBFSKGFSETKWB8oHMkJtVoCLTUQwjjTpaU2AbOxYGRJcbIhNqGACzpGL4PvVtfq4Kq9difV6kotp5nq_3DYP7jKPwjs88AeXPt7NL5Tu_boQmavCKUEJOYcBwoGqnCt987Yiy1g1deq-lpVX6s61xo0T4OmMsZceMF4Komk_11ecP0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2332190660</pqid></control><display><type>article</type><title>Lung Thermal Transfer System Identification With Fractional Models</title><source>IEEE Electronic Library (IEL)</source><creator>Victor, Stephane ; Melchior, Pierre ; Pellet, Mathieu ; Oustaloup, Alain</creator><creatorcontrib>Victor, Stephane ; Melchior, Pierre ; Pellet, Mathieu ; Oustaloup, Alain</creatorcontrib><description>System identification through fractional models is proposed for modeling thermal transfers in the lungs. In general, during open-heart surgery, an extracorporeal circulation is carried out on the patient. First, the lungs are disconnected from the circulatory system so that an artificial heart/lung machine can be plugged on the bloodstream. Pulmonary cells die when they are no more supplied with fresh blood, which may result in postoperative respiratory complications for the patient. Also, bronchial hypothermia is carried out to protect the lungs. Indeed, cooling the lung organ helps slowing down its deterioration. Unfortunately, the lung thermal properties are not well known yet; therefore, mathematical models are useful and needed in order to improve the knowledge of these organs. As proved by several previous works, fractional models are well suited to model the dynamics of fractal systems and to model thermal systems, thanks to its model parameter compactness but also thanks to the solving of the heat equation whose analytical result reveals a fractional differentiation operator of order 0.5. System identification results are provided on real data measured on sheep lungs. Thus, this paper studies the comparison between a rational model and two kinds of fractional models, a classic one and another one using the Havriliak-Negami function. Time-domain and frequency-domain analysis are provided, showing the efficiency of fractional models, but more precisely of Havriliak-Negami transfer functions.</description><identifier>ISSN: 1063-6536</identifier><identifier>EISSN: 1558-0865</identifier><identifier>DOI: 10.1109/TCST.2018.2877606</identifier><identifier>CODEN: IETTE2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial organs ; Automatic ; Bioengineering ; black-box identification ; Circulatory system ; Engineering Sciences ; Fractal models ; Fractals ; fractional-order model ; Frequency analysis ; Frequency domain analysis ; Hypothermia ; Lung ; lung modeling ; Lungs ; Mathematical model ; noninteger differentiation ; Operators (mathematics) ; Organs ; Sheep ; Surgery ; System identification ; Temperature measurement ; Temperature sensors ; Thermodynamic properties ; Thermodynamics ; Time domain analysis ; Transfer functions</subject><ispartof>IEEE transactions on control systems technology, 2020-01, Vol.28 (1), p.172-182</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-4c3c106a884875510636369623fa913da122565adf3f41ebf1e9d304b2f4310c3</citedby><cites>FETCH-LOGICAL-c327t-4c3c106a884875510636369623fa913da122565adf3f41ebf1e9d304b2f4310c3</cites><orcidid>0000-0002-0575-0383 ; 0000-0003-2157-8584</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8567929$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8567929$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-02010639$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Victor, Stephane</creatorcontrib><creatorcontrib>Melchior, Pierre</creatorcontrib><creatorcontrib>Pellet, Mathieu</creatorcontrib><creatorcontrib>Oustaloup, Alain</creatorcontrib><title>Lung Thermal Transfer System Identification With Fractional Models</title><title>IEEE transactions on control systems technology</title><addtitle>TCST</addtitle><description>System identification through fractional models is proposed for modeling thermal transfers in the lungs. In general, during open-heart surgery, an extracorporeal circulation is carried out on the patient. First, the lungs are disconnected from the circulatory system so that an artificial heart/lung machine can be plugged on the bloodstream. Pulmonary cells die when they are no more supplied with fresh blood, which may result in postoperative respiratory complications for the patient. Also, bronchial hypothermia is carried out to protect the lungs. Indeed, cooling the lung organ helps slowing down its deterioration. Unfortunately, the lung thermal properties are not well known yet; therefore, mathematical models are useful and needed in order to improve the knowledge of these organs. As proved by several previous works, fractional models are well suited to model the dynamics of fractal systems and to model thermal systems, thanks to its model parameter compactness but also thanks to the solving of the heat equation whose analytical result reveals a fractional differentiation operator of order 0.5. System identification results are provided on real data measured on sheep lungs. Thus, this paper studies the comparison between a rational model and two kinds of fractional models, a classic one and another one using the Havriliak-Negami function. Time-domain and frequency-domain analysis are provided, showing the efficiency of fractional models, but more precisely of Havriliak-Negami transfer functions.</description><subject>Artificial organs</subject><subject>Automatic</subject><subject>Bioengineering</subject><subject>black-box identification</subject><subject>Circulatory system</subject><subject>Engineering Sciences</subject><subject>Fractal models</subject><subject>Fractals</subject><subject>fractional-order model</subject><subject>Frequency analysis</subject><subject>Frequency domain analysis</subject><subject>Hypothermia</subject><subject>Lung</subject><subject>lung modeling</subject><subject>Lungs</subject><subject>Mathematical model</subject><subject>noninteger differentiation</subject><subject>Operators (mathematics)</subject><subject>Organs</subject><subject>Sheep</subject><subject>Surgery</subject><subject>System identification</subject><subject>Temperature measurement</subject><subject>Temperature sensors</subject><subject>Thermodynamic properties</subject><subject>Thermodynamics</subject><subject>Time domain analysis</subject><subject>Transfer functions</subject><issn>1063-6536</issn><issn>1558-0865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFLwzAYxYMoOKd_gHgpePLQmS9p0uQ4x-YGFQ-reAxZm7iOrp1JJ-y_N6Vj5JB84fce73sIPQKeAGD5ms_W-YRgEBMi0pRjfoVGwJiIseDsOrwxpzFnlN-iO-93GEPCSDpCb9mx-YnyrXF7XUe50423xkXrk-_MPlqVpukqWxW6q9om-q66bbRwuuingH-0pan9Pbqxuvbm4XyP0ddins-Wcfb5vppNs7igJO3ipKBFSKGFSETKWB8oHMkJtVoCLTUQwjjTpaU2AbOxYGRJcbIhNqGACzpGL4PvVtfq4Kq9difV6kotp5nq_3DYP7jKPwjs88AeXPt7NL5Tu_boQmavCKUEJOYcBwoGqnCt987Yiy1g1deq-lpVX6s61xo0T4OmMsZceMF4Komk_11ecP0</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Victor, Stephane</creator><creator>Melchior, Pierre</creator><creator>Pellet, Mathieu</creator><creator>Oustaloup, Alain</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-0575-0383</orcidid><orcidid>https://orcid.org/0000-0003-2157-8584</orcidid></search><sort><creationdate>20200101</creationdate><title>Lung Thermal Transfer System Identification With Fractional Models</title><author>Victor, Stephane ; Melchior, Pierre ; Pellet, Mathieu ; Oustaloup, Alain</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-4c3c106a884875510636369623fa913da122565adf3f41ebf1e9d304b2f4310c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial organs</topic><topic>Automatic</topic><topic>Bioengineering</topic><topic>black-box identification</topic><topic>Circulatory system</topic><topic>Engineering Sciences</topic><topic>Fractal models</topic><topic>Fractals</topic><topic>fractional-order model</topic><topic>Frequency analysis</topic><topic>Frequency domain analysis</topic><topic>Hypothermia</topic><topic>Lung</topic><topic>lung modeling</topic><topic>Lungs</topic><topic>Mathematical model</topic><topic>noninteger differentiation</topic><topic>Operators (mathematics)</topic><topic>Organs</topic><topic>Sheep</topic><topic>Surgery</topic><topic>System identification</topic><topic>Temperature measurement</topic><topic>Temperature sensors</topic><topic>Thermodynamic properties</topic><topic>Thermodynamics</topic><topic>Time domain analysis</topic><topic>Transfer functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Victor, Stephane</creatorcontrib><creatorcontrib>Melchior, Pierre</creatorcontrib><creatorcontrib>Pellet, Mathieu</creatorcontrib><creatorcontrib>Oustaloup, Alain</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE transactions on control systems technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Victor, Stephane</au><au>Melchior, Pierre</au><au>Pellet, Mathieu</au><au>Oustaloup, Alain</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lung Thermal Transfer System Identification With Fractional Models</atitle><jtitle>IEEE transactions on control systems technology</jtitle><stitle>TCST</stitle><date>2020-01-01</date><risdate>2020</risdate><volume>28</volume><issue>1</issue><spage>172</spage><epage>182</epage><pages>172-182</pages><issn>1063-6536</issn><eissn>1558-0865</eissn><coden>IETTE2</coden><abstract>System identification through fractional models is proposed for modeling thermal transfers in the lungs. In general, during open-heart surgery, an extracorporeal circulation is carried out on the patient. First, the lungs are disconnected from the circulatory system so that an artificial heart/lung machine can be plugged on the bloodstream. Pulmonary cells die when they are no more supplied with fresh blood, which may result in postoperative respiratory complications for the patient. Also, bronchial hypothermia is carried out to protect the lungs. Indeed, cooling the lung organ helps slowing down its deterioration. Unfortunately, the lung thermal properties are not well known yet; therefore, mathematical models are useful and needed in order to improve the knowledge of these organs. As proved by several previous works, fractional models are well suited to model the dynamics of fractal systems and to model thermal systems, thanks to its model parameter compactness but also thanks to the solving of the heat equation whose analytical result reveals a fractional differentiation operator of order 0.5. System identification results are provided on real data measured on sheep lungs. Thus, this paper studies the comparison between a rational model and two kinds of fractional models, a classic one and another one using the Havriliak-Negami function. Time-domain and frequency-domain analysis are provided, showing the efficiency of fractional models, but more precisely of Havriliak-Negami transfer functions.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCST.2018.2877606</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0575-0383</orcidid><orcidid>https://orcid.org/0000-0003-2157-8584</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6536
ispartof IEEE transactions on control systems technology, 2020-01, Vol.28 (1), p.172-182
issn 1063-6536
1558-0865
language eng
recordid cdi_hal_primary_oai_HAL_hal_02010639v1
source IEEE Electronic Library (IEL)
subjects Artificial organs
Automatic
Bioengineering
black-box identification
Circulatory system
Engineering Sciences
Fractal models
Fractals
fractional-order model
Frequency analysis
Frequency domain analysis
Hypothermia
Lung
lung modeling
Lungs
Mathematical model
noninteger differentiation
Operators (mathematics)
Organs
Sheep
Surgery
System identification
Temperature measurement
Temperature sensors
Thermodynamic properties
Thermodynamics
Time domain analysis
Transfer functions
title Lung Thermal Transfer System Identification With Fractional Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A38%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lung%20Thermal%20Transfer%20System%20Identification%20With%20Fractional%20Models&rft.jtitle=IEEE%20transactions%20on%20control%20systems%20technology&rft.au=Victor,%20Stephane&rft.date=2020-01-01&rft.volume=28&rft.issue=1&rft.spage=172&rft.epage=182&rft.pages=172-182&rft.issn=1063-6536&rft.eissn=1558-0865&rft.coden=IETTE2&rft_id=info:doi/10.1109/TCST.2018.2877606&rft_dat=%3Cproquest_RIE%3E2332190660%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2332190660&rft_id=info:pmid/&rft_ieee_id=8567929&rfr_iscdi=true