Lung Thermal Transfer System Identification With Fractional Models
System identification through fractional models is proposed for modeling thermal transfers in the lungs. In general, during open-heart surgery, an extracorporeal circulation is carried out on the patient. First, the lungs are disconnected from the circulatory system so that an artificial heart/lung...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on control systems technology 2020-01, Vol.28 (1), p.172-182 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 182 |
---|---|
container_issue | 1 |
container_start_page | 172 |
container_title | IEEE transactions on control systems technology |
container_volume | 28 |
creator | Victor, Stephane Melchior, Pierre Pellet, Mathieu Oustaloup, Alain |
description | System identification through fractional models is proposed for modeling thermal transfers in the lungs. In general, during open-heart surgery, an extracorporeal circulation is carried out on the patient. First, the lungs are disconnected from the circulatory system so that an artificial heart/lung machine can be plugged on the bloodstream. Pulmonary cells die when they are no more supplied with fresh blood, which may result in postoperative respiratory complications for the patient. Also, bronchial hypothermia is carried out to protect the lungs. Indeed, cooling the lung organ helps slowing down its deterioration. Unfortunately, the lung thermal properties are not well known yet; therefore, mathematical models are useful and needed in order to improve the knowledge of these organs. As proved by several previous works, fractional models are well suited to model the dynamics of fractal systems and to model thermal systems, thanks to its model parameter compactness but also thanks to the solving of the heat equation whose analytical result reveals a fractional differentiation operator of order 0.5. System identification results are provided on real data measured on sheep lungs. Thus, this paper studies the comparison between a rational model and two kinds of fractional models, a classic one and another one using the Havriliak-Negami function. Time-domain and frequency-domain analysis are provided, showing the efficiency of fractional models, but more precisely of Havriliak-Negami transfer functions. |
doi_str_mv | 10.1109/TCST.2018.2877606 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02010639v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8567929</ieee_id><sourcerecordid>2332190660</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-4c3c106a884875510636369623fa913da122565adf3f41ebf1e9d304b2f4310c3</originalsourceid><addsrcrecordid>eNo9kMFLwzAYxYMoOKd_gHgpePLQmS9p0uQ4x-YGFQ-reAxZm7iOrp1JJ-y_N6Vj5JB84fce73sIPQKeAGD5ms_W-YRgEBMi0pRjfoVGwJiIseDsOrwxpzFnlN-iO-93GEPCSDpCb9mx-YnyrXF7XUe50423xkXrk-_MPlqVpukqWxW6q9om-q66bbRwuuingH-0pan9Pbqxuvbm4XyP0ddins-Wcfb5vppNs7igJO3ipKBFSKGFSETKWB8oHMkJtVoCLTUQwjjTpaU2AbOxYGRJcbIhNqGACzpGL4PvVtfq4Kq9difV6kotp5nq_3DYP7jKPwjs88AeXPt7NL5Tu_boQmavCKUEJOYcBwoGqnCt987Yiy1g1deq-lpVX6s61xo0T4OmMsZceMF4Komk_11ecP0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2332190660</pqid></control><display><type>article</type><title>Lung Thermal Transfer System Identification With Fractional Models</title><source>IEEE Electronic Library (IEL)</source><creator>Victor, Stephane ; Melchior, Pierre ; Pellet, Mathieu ; Oustaloup, Alain</creator><creatorcontrib>Victor, Stephane ; Melchior, Pierre ; Pellet, Mathieu ; Oustaloup, Alain</creatorcontrib><description>System identification through fractional models is proposed for modeling thermal transfers in the lungs. In general, during open-heart surgery, an extracorporeal circulation is carried out on the patient. First, the lungs are disconnected from the circulatory system so that an artificial heart/lung machine can be plugged on the bloodstream. Pulmonary cells die when they are no more supplied with fresh blood, which may result in postoperative respiratory complications for the patient. Also, bronchial hypothermia is carried out to protect the lungs. Indeed, cooling the lung organ helps slowing down its deterioration. Unfortunately, the lung thermal properties are not well known yet; therefore, mathematical models are useful and needed in order to improve the knowledge of these organs. As proved by several previous works, fractional models are well suited to model the dynamics of fractal systems and to model thermal systems, thanks to its model parameter compactness but also thanks to the solving of the heat equation whose analytical result reveals a fractional differentiation operator of order 0.5. System identification results are provided on real data measured on sheep lungs. Thus, this paper studies the comparison between a rational model and two kinds of fractional models, a classic one and another one using the Havriliak-Negami function. Time-domain and frequency-domain analysis are provided, showing the efficiency of fractional models, but more precisely of Havriliak-Negami transfer functions.</description><identifier>ISSN: 1063-6536</identifier><identifier>EISSN: 1558-0865</identifier><identifier>DOI: 10.1109/TCST.2018.2877606</identifier><identifier>CODEN: IETTE2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial organs ; Automatic ; Bioengineering ; black-box identification ; Circulatory system ; Engineering Sciences ; Fractal models ; Fractals ; fractional-order model ; Frequency analysis ; Frequency domain analysis ; Hypothermia ; Lung ; lung modeling ; Lungs ; Mathematical model ; noninteger differentiation ; Operators (mathematics) ; Organs ; Sheep ; Surgery ; System identification ; Temperature measurement ; Temperature sensors ; Thermodynamic properties ; Thermodynamics ; Time domain analysis ; Transfer functions</subject><ispartof>IEEE transactions on control systems technology, 2020-01, Vol.28 (1), p.172-182</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-4c3c106a884875510636369623fa913da122565adf3f41ebf1e9d304b2f4310c3</citedby><cites>FETCH-LOGICAL-c327t-4c3c106a884875510636369623fa913da122565adf3f41ebf1e9d304b2f4310c3</cites><orcidid>0000-0002-0575-0383 ; 0000-0003-2157-8584</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8567929$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8567929$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-02010639$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Victor, Stephane</creatorcontrib><creatorcontrib>Melchior, Pierre</creatorcontrib><creatorcontrib>Pellet, Mathieu</creatorcontrib><creatorcontrib>Oustaloup, Alain</creatorcontrib><title>Lung Thermal Transfer System Identification With Fractional Models</title><title>IEEE transactions on control systems technology</title><addtitle>TCST</addtitle><description>System identification through fractional models is proposed for modeling thermal transfers in the lungs. In general, during open-heart surgery, an extracorporeal circulation is carried out on the patient. First, the lungs are disconnected from the circulatory system so that an artificial heart/lung machine can be plugged on the bloodstream. Pulmonary cells die when they are no more supplied with fresh blood, which may result in postoperative respiratory complications for the patient. Also, bronchial hypothermia is carried out to protect the lungs. Indeed, cooling the lung organ helps slowing down its deterioration. Unfortunately, the lung thermal properties are not well known yet; therefore, mathematical models are useful and needed in order to improve the knowledge of these organs. As proved by several previous works, fractional models are well suited to model the dynamics of fractal systems and to model thermal systems, thanks to its model parameter compactness but also thanks to the solving of the heat equation whose analytical result reveals a fractional differentiation operator of order 0.5. System identification results are provided on real data measured on sheep lungs. Thus, this paper studies the comparison between a rational model and two kinds of fractional models, a classic one and another one using the Havriliak-Negami function. Time-domain and frequency-domain analysis are provided, showing the efficiency of fractional models, but more precisely of Havriliak-Negami transfer functions.</description><subject>Artificial organs</subject><subject>Automatic</subject><subject>Bioengineering</subject><subject>black-box identification</subject><subject>Circulatory system</subject><subject>Engineering Sciences</subject><subject>Fractal models</subject><subject>Fractals</subject><subject>fractional-order model</subject><subject>Frequency analysis</subject><subject>Frequency domain analysis</subject><subject>Hypothermia</subject><subject>Lung</subject><subject>lung modeling</subject><subject>Lungs</subject><subject>Mathematical model</subject><subject>noninteger differentiation</subject><subject>Operators (mathematics)</subject><subject>Organs</subject><subject>Sheep</subject><subject>Surgery</subject><subject>System identification</subject><subject>Temperature measurement</subject><subject>Temperature sensors</subject><subject>Thermodynamic properties</subject><subject>Thermodynamics</subject><subject>Time domain analysis</subject><subject>Transfer functions</subject><issn>1063-6536</issn><issn>1558-0865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFLwzAYxYMoOKd_gHgpePLQmS9p0uQ4x-YGFQ-reAxZm7iOrp1JJ-y_N6Vj5JB84fce73sIPQKeAGD5ms_W-YRgEBMi0pRjfoVGwJiIseDsOrwxpzFnlN-iO-93GEPCSDpCb9mx-YnyrXF7XUe50423xkXrk-_MPlqVpukqWxW6q9om-q66bbRwuuingH-0pan9Pbqxuvbm4XyP0ddins-Wcfb5vppNs7igJO3ipKBFSKGFSETKWB8oHMkJtVoCLTUQwjjTpaU2AbOxYGRJcbIhNqGACzpGL4PvVtfq4Kq9difV6kotp5nq_3DYP7jKPwjs88AeXPt7NL5Tu_boQmavCKUEJOYcBwoGqnCt987Yiy1g1deq-lpVX6s61xo0T4OmMsZceMF4Komk_11ecP0</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Victor, Stephane</creator><creator>Melchior, Pierre</creator><creator>Pellet, Mathieu</creator><creator>Oustaloup, Alain</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>Institute of Electrical and Electronics Engineers</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-0575-0383</orcidid><orcidid>https://orcid.org/0000-0003-2157-8584</orcidid></search><sort><creationdate>20200101</creationdate><title>Lung Thermal Transfer System Identification With Fractional Models</title><author>Victor, Stephane ; Melchior, Pierre ; Pellet, Mathieu ; Oustaloup, Alain</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-4c3c106a884875510636369623fa913da122565adf3f41ebf1e9d304b2f4310c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial organs</topic><topic>Automatic</topic><topic>Bioengineering</topic><topic>black-box identification</topic><topic>Circulatory system</topic><topic>Engineering Sciences</topic><topic>Fractal models</topic><topic>Fractals</topic><topic>fractional-order model</topic><topic>Frequency analysis</topic><topic>Frequency domain analysis</topic><topic>Hypothermia</topic><topic>Lung</topic><topic>lung modeling</topic><topic>Lungs</topic><topic>Mathematical model</topic><topic>noninteger differentiation</topic><topic>Operators (mathematics)</topic><topic>Organs</topic><topic>Sheep</topic><topic>Surgery</topic><topic>System identification</topic><topic>Temperature measurement</topic><topic>Temperature sensors</topic><topic>Thermodynamic properties</topic><topic>Thermodynamics</topic><topic>Time domain analysis</topic><topic>Transfer functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Victor, Stephane</creatorcontrib><creatorcontrib>Melchior, Pierre</creatorcontrib><creatorcontrib>Pellet, Mathieu</creatorcontrib><creatorcontrib>Oustaloup, Alain</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE transactions on control systems technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Victor, Stephane</au><au>Melchior, Pierre</au><au>Pellet, Mathieu</au><au>Oustaloup, Alain</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lung Thermal Transfer System Identification With Fractional Models</atitle><jtitle>IEEE transactions on control systems technology</jtitle><stitle>TCST</stitle><date>2020-01-01</date><risdate>2020</risdate><volume>28</volume><issue>1</issue><spage>172</spage><epage>182</epage><pages>172-182</pages><issn>1063-6536</issn><eissn>1558-0865</eissn><coden>IETTE2</coden><abstract>System identification through fractional models is proposed for modeling thermal transfers in the lungs. In general, during open-heart surgery, an extracorporeal circulation is carried out on the patient. First, the lungs are disconnected from the circulatory system so that an artificial heart/lung machine can be plugged on the bloodstream. Pulmonary cells die when they are no more supplied with fresh blood, which may result in postoperative respiratory complications for the patient. Also, bronchial hypothermia is carried out to protect the lungs. Indeed, cooling the lung organ helps slowing down its deterioration. Unfortunately, the lung thermal properties are not well known yet; therefore, mathematical models are useful and needed in order to improve the knowledge of these organs. As proved by several previous works, fractional models are well suited to model the dynamics of fractal systems and to model thermal systems, thanks to its model parameter compactness but also thanks to the solving of the heat equation whose analytical result reveals a fractional differentiation operator of order 0.5. System identification results are provided on real data measured on sheep lungs. Thus, this paper studies the comparison between a rational model and two kinds of fractional models, a classic one and another one using the Havriliak-Negami function. Time-domain and frequency-domain analysis are provided, showing the efficiency of fractional models, but more precisely of Havriliak-Negami transfer functions.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCST.2018.2877606</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0575-0383</orcidid><orcidid>https://orcid.org/0000-0003-2157-8584</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-6536 |
ispartof | IEEE transactions on control systems technology, 2020-01, Vol.28 (1), p.172-182 |
issn | 1063-6536 1558-0865 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02010639v1 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial organs Automatic Bioengineering black-box identification Circulatory system Engineering Sciences Fractal models Fractals fractional-order model Frequency analysis Frequency domain analysis Hypothermia Lung lung modeling Lungs Mathematical model noninteger differentiation Operators (mathematics) Organs Sheep Surgery System identification Temperature measurement Temperature sensors Thermodynamic properties Thermodynamics Time domain analysis Transfer functions |
title | Lung Thermal Transfer System Identification With Fractional Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A38%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lung%20Thermal%20Transfer%20System%20Identification%20With%20Fractional%20Models&rft.jtitle=IEEE%20transactions%20on%20control%20systems%20technology&rft.au=Victor,%20Stephane&rft.date=2020-01-01&rft.volume=28&rft.issue=1&rft.spage=172&rft.epage=182&rft.pages=172-182&rft.issn=1063-6536&rft.eissn=1558-0865&rft.coden=IETTE2&rft_id=info:doi/10.1109/TCST.2018.2877606&rft_dat=%3Cproquest_RIE%3E2332190660%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2332190660&rft_id=info:pmid/&rft_ieee_id=8567929&rfr_iscdi=true |