Lysosomal Signaling Licenses Embryonic Stem Cell Differentiation via Inactivation of Tfe3
Self-renewal and differentiation of pluripotent murine embryonic stem cells (ESCs) is regulated by extrinsic signaling pathways. It is less clear whether cellular metabolism instructs developmental progression. In an unbiased genome-wide CRISPR/Cas9 screen, we identified components of a conserved am...
Gespeichert in:
Veröffentlicht in: | Cell stem cell 2019-02, Vol.24 (2), p.257-270.e8 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 270.e8 |
---|---|
container_issue | 2 |
container_start_page | 257 |
container_title | Cell stem cell |
container_volume | 24 |
creator | Villegas, Florian Lehalle, Daphné Mayer, Daniela Rittirsch, Melanie Stadler, Michael B. Zinner, Marietta Olivieri, Daniel Vabres, Pierre Duplomb-Jego, Laurence De Bont, Eveline S.J.M. Duffourd, Yannis Duijkers, Floor Avila, Magali Geneviève, David Houcinat, Nada Jouan, Thibaud Kuentz, Paul Lichtenbelt, Klaske D. Thauvin-Robinet, Christel St-Onge, Judith Thevenon, Julien van Gassen, Koen L.I. van Haelst, Mieke van Koningsbruggen, Silvana Hess, Daniel Smallwood, Sebastien A. Rivière, Jean-Baptiste Faivre, Laurence Betschinger, Joerg |
description | Self-renewal and differentiation of pluripotent murine embryonic stem cells (ESCs) is regulated by extrinsic signaling pathways. It is less clear whether cellular metabolism instructs developmental progression. In an unbiased genome-wide CRISPR/Cas9 screen, we identified components of a conserved amino-acid-sensing pathway as critical drivers of ESC differentiation. Functional analysis revealed that lysosome activity, the Ragulator protein complex, and the tumor-suppressor protein Folliculin enable the Rag GTPases C and D to bind and seclude the bHLH transcription factor Tfe3 in the cytoplasm. In contrast, ectopic nuclear Tfe3 represses specific developmental and metabolic transcriptional programs that are associated with peri-implantation development. We show differentiation-specific and non-canonical regulation of Rag GTPase in ESCs and, importantly, identify point mutations in a Tfe3 domain required for cytoplasmic inactivation as potentially causal for a human developmental disorder. Our work reveals an instructive and biomedically relevant role of metabolic signaling in licensing embryonic cell fate transitions.
[Display omitted]
•Genome-wide CRISPR/Cas9 screen for differentiation resistance in mouse ESCs•Lysosomal Rag GTPase signaling inactivates Tfe3 to license exit from self-renewal•Rag GTPase regulation in steady-state cells and starvation is distinct•Tfe3 inactivation mutations found in a human mosaic developmental disorder
Villegas et al. identify mouse embryonic stem cell differentiation drivers in a genome-wide CRISPR/Cas9 screen. The majority of these are part of a lysosomal signaling pathway that licenses differentiation by inactivating the transcription factor Tfe3. The authors discover lysosomal-signaling-insensitive Tfe3 mutations as potentially causal for a human developmental disorder. |
doi_str_mv | 10.1016/j.stem.2018.11.021 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02005576v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1934590918305575</els_id><sourcerecordid>2161924564</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-f942c16f5024a0bb43fec88e9764cc7690e743c298a8d792aa2bcccd16a1a8153</originalsourceid><addsrcrecordid>eNp9kE1v1DAQhi0Eoh_wBzggH-GQ4HHsOJa4VEtpK0Xi0HLgZDnOpHiVxMXOrrT_HkcpPXKa0eiZdzQPIR-AlcCg_rIv04JTyRk0JUDJOLwi59AoWWil1Ovc60oUUjN9Ri5S2jMmFTD1lpxVTGoptD4nv9pTCilMdqT3_nG2o58faesdzgkTvZ66eAqzd_Q-X6I7HEf6zQ8DRpwXbxcfZnr0lt7N1i3-uA3CQB8GrN6RN4MdE75_rpfk5_frh91t0f64udtdtYUTlViKQQvuoB4k48KyrhPVgK5pUKtaOKdqzVCJynHd2KZXmlvLO-dcD7UF24CsLsnnLfe3Hc1T9JONJxOsN7dXrVlnjOfHpaqPkNlPG_sUw58DpsVMPrn8lZ0xHJLhUIPmQtYio3xDXQwpRRxesoGZVb_Zm1W_WfUbgHxmzf_4nH_oJuxfVv75zsDXDcBs5OgxmuQ8zg57H9Etpg_-f_l_Aan6ldY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2161924564</pqid></control><display><type>article</type><title>Lysosomal Signaling Licenses Embryonic Stem Cell Differentiation via Inactivation of Tfe3</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Villegas, Florian ; Lehalle, Daphné ; Mayer, Daniela ; Rittirsch, Melanie ; Stadler, Michael B. ; Zinner, Marietta ; Olivieri, Daniel ; Vabres, Pierre ; Duplomb-Jego, Laurence ; De Bont, Eveline S.J.M. ; Duffourd, Yannis ; Duijkers, Floor ; Avila, Magali ; Geneviève, David ; Houcinat, Nada ; Jouan, Thibaud ; Kuentz, Paul ; Lichtenbelt, Klaske D. ; Thauvin-Robinet, Christel ; St-Onge, Judith ; Thevenon, Julien ; van Gassen, Koen L.I. ; van Haelst, Mieke ; van Koningsbruggen, Silvana ; Hess, Daniel ; Smallwood, Sebastien A. ; Rivière, Jean-Baptiste ; Faivre, Laurence ; Betschinger, Joerg</creator><creatorcontrib>Villegas, Florian ; Lehalle, Daphné ; Mayer, Daniela ; Rittirsch, Melanie ; Stadler, Michael B. ; Zinner, Marietta ; Olivieri, Daniel ; Vabres, Pierre ; Duplomb-Jego, Laurence ; De Bont, Eveline S.J.M. ; Duffourd, Yannis ; Duijkers, Floor ; Avila, Magali ; Geneviève, David ; Houcinat, Nada ; Jouan, Thibaud ; Kuentz, Paul ; Lichtenbelt, Klaske D. ; Thauvin-Robinet, Christel ; St-Onge, Judith ; Thevenon, Julien ; van Gassen, Koen L.I. ; van Haelst, Mieke ; van Koningsbruggen, Silvana ; Hess, Daniel ; Smallwood, Sebastien A. ; Rivière, Jean-Baptiste ; Faivre, Laurence ; Betschinger, Joerg</creatorcontrib><description>Self-renewal and differentiation of pluripotent murine embryonic stem cells (ESCs) is regulated by extrinsic signaling pathways. It is less clear whether cellular metabolism instructs developmental progression. In an unbiased genome-wide CRISPR/Cas9 screen, we identified components of a conserved amino-acid-sensing pathway as critical drivers of ESC differentiation. Functional analysis revealed that lysosome activity, the Ragulator protein complex, and the tumor-suppressor protein Folliculin enable the Rag GTPases C and D to bind and seclude the bHLH transcription factor Tfe3 in the cytoplasm. In contrast, ectopic nuclear Tfe3 represses specific developmental and metabolic transcriptional programs that are associated with peri-implantation development. We show differentiation-specific and non-canonical regulation of Rag GTPase in ESCs and, importantly, identify point mutations in a Tfe3 domain required for cytoplasmic inactivation as potentially causal for a human developmental disorder. Our work reveals an instructive and biomedically relevant role of metabolic signaling in licensing embryonic cell fate transitions.
[Display omitted]
•Genome-wide CRISPR/Cas9 screen for differentiation resistance in mouse ESCs•Lysosomal Rag GTPase signaling inactivates Tfe3 to license exit from self-renewal•Rag GTPase regulation in steady-state cells and starvation is distinct•Tfe3 inactivation mutations found in a human mosaic developmental disorder
Villegas et al. identify mouse embryonic stem cell differentiation drivers in a genome-wide CRISPR/Cas9 screen. The majority of these are part of a lysosomal signaling pathway that licenses differentiation by inactivating the transcription factor Tfe3. The authors discover lysosomal-signaling-insensitive Tfe3 mutations as potentially causal for a human developmental disorder.</description><identifier>ISSN: 1934-5909</identifier><identifier>EISSN: 1875-9777</identifier><identifier>DOI: 10.1016/j.stem.2018.11.021</identifier><identifier>PMID: 30595499</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Alleles ; Animals ; Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - metabolism ; Cell Differentiation ; Cell Self Renewal ; developmental disorder ; differentiation ; embryonic stem cell ; Female ; Flcn ; Genetics ; Genome ; GTP Phosphohydrolases - metabolism ; Human genetics ; Humans ; Life Sciences ; Lysosomes - metabolism ; Male ; Mice ; Mouse Embryonic Stem Cells - cytology ; Mouse Embryonic Stem Cells - metabolism ; mTOR ; Neural Stem Cells - cytology ; Neural Stem Cells - metabolism ; Phosphorylation ; pluripotency ; Point Mutation - genetics ; Protein Binding ; Rag GTPases ; Ragulator ; Signal Transduction ; Tfe3 ; Transcription, Genetic</subject><ispartof>Cell stem cell, 2019-02, Vol.24 (2), p.257-270.e8</ispartof><rights>2018 Elsevier Inc.</rights><rights>Copyright © 2018 Elsevier Inc. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-f942c16f5024a0bb43fec88e9764cc7690e743c298a8d792aa2bcccd16a1a8153</citedby><cites>FETCH-LOGICAL-c434t-f942c16f5024a0bb43fec88e9764cc7690e743c298a8d792aa2bcccd16a1a8153</cites><orcidid>0000-0002-2193-8685 ; 0000-0001-9271-3961 ; 0000-0001-6928-6287</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.stem.2018.11.021$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,778,782,883,3539,27911,27912,45982</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30595499$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://u-bourgogne.hal.science/hal-02005576$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Villegas, Florian</creatorcontrib><creatorcontrib>Lehalle, Daphné</creatorcontrib><creatorcontrib>Mayer, Daniela</creatorcontrib><creatorcontrib>Rittirsch, Melanie</creatorcontrib><creatorcontrib>Stadler, Michael B.</creatorcontrib><creatorcontrib>Zinner, Marietta</creatorcontrib><creatorcontrib>Olivieri, Daniel</creatorcontrib><creatorcontrib>Vabres, Pierre</creatorcontrib><creatorcontrib>Duplomb-Jego, Laurence</creatorcontrib><creatorcontrib>De Bont, Eveline S.J.M.</creatorcontrib><creatorcontrib>Duffourd, Yannis</creatorcontrib><creatorcontrib>Duijkers, Floor</creatorcontrib><creatorcontrib>Avila, Magali</creatorcontrib><creatorcontrib>Geneviève, David</creatorcontrib><creatorcontrib>Houcinat, Nada</creatorcontrib><creatorcontrib>Jouan, Thibaud</creatorcontrib><creatorcontrib>Kuentz, Paul</creatorcontrib><creatorcontrib>Lichtenbelt, Klaske D.</creatorcontrib><creatorcontrib>Thauvin-Robinet, Christel</creatorcontrib><creatorcontrib>St-Onge, Judith</creatorcontrib><creatorcontrib>Thevenon, Julien</creatorcontrib><creatorcontrib>van Gassen, Koen L.I.</creatorcontrib><creatorcontrib>van Haelst, Mieke</creatorcontrib><creatorcontrib>van Koningsbruggen, Silvana</creatorcontrib><creatorcontrib>Hess, Daniel</creatorcontrib><creatorcontrib>Smallwood, Sebastien A.</creatorcontrib><creatorcontrib>Rivière, Jean-Baptiste</creatorcontrib><creatorcontrib>Faivre, Laurence</creatorcontrib><creatorcontrib>Betschinger, Joerg</creatorcontrib><title>Lysosomal Signaling Licenses Embryonic Stem Cell Differentiation via Inactivation of Tfe3</title><title>Cell stem cell</title><addtitle>Cell Stem Cell</addtitle><description>Self-renewal and differentiation of pluripotent murine embryonic stem cells (ESCs) is regulated by extrinsic signaling pathways. It is less clear whether cellular metabolism instructs developmental progression. In an unbiased genome-wide CRISPR/Cas9 screen, we identified components of a conserved amino-acid-sensing pathway as critical drivers of ESC differentiation. Functional analysis revealed that lysosome activity, the Ragulator protein complex, and the tumor-suppressor protein Folliculin enable the Rag GTPases C and D to bind and seclude the bHLH transcription factor Tfe3 in the cytoplasm. In contrast, ectopic nuclear Tfe3 represses specific developmental and metabolic transcriptional programs that are associated with peri-implantation development. We show differentiation-specific and non-canonical regulation of Rag GTPase in ESCs and, importantly, identify point mutations in a Tfe3 domain required for cytoplasmic inactivation as potentially causal for a human developmental disorder. Our work reveals an instructive and biomedically relevant role of metabolic signaling in licensing embryonic cell fate transitions.
[Display omitted]
•Genome-wide CRISPR/Cas9 screen for differentiation resistance in mouse ESCs•Lysosomal Rag GTPase signaling inactivates Tfe3 to license exit from self-renewal•Rag GTPase regulation in steady-state cells and starvation is distinct•Tfe3 inactivation mutations found in a human mosaic developmental disorder
Villegas et al. identify mouse embryonic stem cell differentiation drivers in a genome-wide CRISPR/Cas9 screen. The majority of these are part of a lysosomal signaling pathway that licenses differentiation by inactivating the transcription factor Tfe3. The authors discover lysosomal-signaling-insensitive Tfe3 mutations as potentially causal for a human developmental disorder.</description><subject>Alleles</subject><subject>Animals</subject><subject>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - metabolism</subject><subject>Cell Differentiation</subject><subject>Cell Self Renewal</subject><subject>developmental disorder</subject><subject>differentiation</subject><subject>embryonic stem cell</subject><subject>Female</subject><subject>Flcn</subject><subject>Genetics</subject><subject>Genome</subject><subject>GTP Phosphohydrolases - metabolism</subject><subject>Human genetics</subject><subject>Humans</subject><subject>Life Sciences</subject><subject>Lysosomes - metabolism</subject><subject>Male</subject><subject>Mice</subject><subject>Mouse Embryonic Stem Cells - cytology</subject><subject>Mouse Embryonic Stem Cells - metabolism</subject><subject>mTOR</subject><subject>Neural Stem Cells - cytology</subject><subject>Neural Stem Cells - metabolism</subject><subject>Phosphorylation</subject><subject>pluripotency</subject><subject>Point Mutation - genetics</subject><subject>Protein Binding</subject><subject>Rag GTPases</subject><subject>Ragulator</subject><subject>Signal Transduction</subject><subject>Tfe3</subject><subject>Transcription, Genetic</subject><issn>1934-5909</issn><issn>1875-9777</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1v1DAQhi0Eoh_wBzggH-GQ4HHsOJa4VEtpK0Xi0HLgZDnOpHiVxMXOrrT_HkcpPXKa0eiZdzQPIR-AlcCg_rIv04JTyRk0JUDJOLwi59AoWWil1Ovc60oUUjN9Ri5S2jMmFTD1lpxVTGoptD4nv9pTCilMdqT3_nG2o58faesdzgkTvZ66eAqzd_Q-X6I7HEf6zQ8DRpwXbxcfZnr0lt7N1i3-uA3CQB8GrN6RN4MdE75_rpfk5_frh91t0f64udtdtYUTlViKQQvuoB4k48KyrhPVgK5pUKtaOKdqzVCJynHd2KZXmlvLO-dcD7UF24CsLsnnLfe3Hc1T9JONJxOsN7dXrVlnjOfHpaqPkNlPG_sUw58DpsVMPrn8lZ0xHJLhUIPmQtYio3xDXQwpRRxesoGZVb_Zm1W_WfUbgHxmzf_4nH_oJuxfVv75zsDXDcBs5OgxmuQ8zg57H9Etpg_-f_l_Aan6ldY</recordid><startdate>20190207</startdate><enddate>20190207</enddate><creator>Villegas, Florian</creator><creator>Lehalle, Daphné</creator><creator>Mayer, Daniela</creator><creator>Rittirsch, Melanie</creator><creator>Stadler, Michael B.</creator><creator>Zinner, Marietta</creator><creator>Olivieri, Daniel</creator><creator>Vabres, Pierre</creator><creator>Duplomb-Jego, Laurence</creator><creator>De Bont, Eveline S.J.M.</creator><creator>Duffourd, Yannis</creator><creator>Duijkers, Floor</creator><creator>Avila, Magali</creator><creator>Geneviève, David</creator><creator>Houcinat, Nada</creator><creator>Jouan, Thibaud</creator><creator>Kuentz, Paul</creator><creator>Lichtenbelt, Klaske D.</creator><creator>Thauvin-Robinet, Christel</creator><creator>St-Onge, Judith</creator><creator>Thevenon, Julien</creator><creator>van Gassen, Koen L.I.</creator><creator>van Haelst, Mieke</creator><creator>van Koningsbruggen, Silvana</creator><creator>Hess, Daniel</creator><creator>Smallwood, Sebastien A.</creator><creator>Rivière, Jean-Baptiste</creator><creator>Faivre, Laurence</creator><creator>Betschinger, Joerg</creator><general>Elsevier Inc</general><general>Cambridge, MA : Cell Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-2193-8685</orcidid><orcidid>https://orcid.org/0000-0001-9271-3961</orcidid><orcidid>https://orcid.org/0000-0001-6928-6287</orcidid></search><sort><creationdate>20190207</creationdate><title>Lysosomal Signaling Licenses Embryonic Stem Cell Differentiation via Inactivation of Tfe3</title><author>Villegas, Florian ; Lehalle, Daphné ; Mayer, Daniela ; Rittirsch, Melanie ; Stadler, Michael B. ; Zinner, Marietta ; Olivieri, Daniel ; Vabres, Pierre ; Duplomb-Jego, Laurence ; De Bont, Eveline S.J.M. ; Duffourd, Yannis ; Duijkers, Floor ; Avila, Magali ; Geneviève, David ; Houcinat, Nada ; Jouan, Thibaud ; Kuentz, Paul ; Lichtenbelt, Klaske D. ; Thauvin-Robinet, Christel ; St-Onge, Judith ; Thevenon, Julien ; van Gassen, Koen L.I. ; van Haelst, Mieke ; van Koningsbruggen, Silvana ; Hess, Daniel ; Smallwood, Sebastien A. ; Rivière, Jean-Baptiste ; Faivre, Laurence ; Betschinger, Joerg</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-f942c16f5024a0bb43fec88e9764cc7690e743c298a8d792aa2bcccd16a1a8153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alleles</topic><topic>Animals</topic><topic>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - metabolism</topic><topic>Cell Differentiation</topic><topic>Cell Self Renewal</topic><topic>developmental disorder</topic><topic>differentiation</topic><topic>embryonic stem cell</topic><topic>Female</topic><topic>Flcn</topic><topic>Genetics</topic><topic>Genome</topic><topic>GTP Phosphohydrolases - metabolism</topic><topic>Human genetics</topic><topic>Humans</topic><topic>Life Sciences</topic><topic>Lysosomes - metabolism</topic><topic>Male</topic><topic>Mice</topic><topic>Mouse Embryonic Stem Cells - cytology</topic><topic>Mouse Embryonic Stem Cells - metabolism</topic><topic>mTOR</topic><topic>Neural Stem Cells - cytology</topic><topic>Neural Stem Cells - metabolism</topic><topic>Phosphorylation</topic><topic>pluripotency</topic><topic>Point Mutation - genetics</topic><topic>Protein Binding</topic><topic>Rag GTPases</topic><topic>Ragulator</topic><topic>Signal Transduction</topic><topic>Tfe3</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Villegas, Florian</creatorcontrib><creatorcontrib>Lehalle, Daphné</creatorcontrib><creatorcontrib>Mayer, Daniela</creatorcontrib><creatorcontrib>Rittirsch, Melanie</creatorcontrib><creatorcontrib>Stadler, Michael B.</creatorcontrib><creatorcontrib>Zinner, Marietta</creatorcontrib><creatorcontrib>Olivieri, Daniel</creatorcontrib><creatorcontrib>Vabres, Pierre</creatorcontrib><creatorcontrib>Duplomb-Jego, Laurence</creatorcontrib><creatorcontrib>De Bont, Eveline S.J.M.</creatorcontrib><creatorcontrib>Duffourd, Yannis</creatorcontrib><creatorcontrib>Duijkers, Floor</creatorcontrib><creatorcontrib>Avila, Magali</creatorcontrib><creatorcontrib>Geneviève, David</creatorcontrib><creatorcontrib>Houcinat, Nada</creatorcontrib><creatorcontrib>Jouan, Thibaud</creatorcontrib><creatorcontrib>Kuentz, Paul</creatorcontrib><creatorcontrib>Lichtenbelt, Klaske D.</creatorcontrib><creatorcontrib>Thauvin-Robinet, Christel</creatorcontrib><creatorcontrib>St-Onge, Judith</creatorcontrib><creatorcontrib>Thevenon, Julien</creatorcontrib><creatorcontrib>van Gassen, Koen L.I.</creatorcontrib><creatorcontrib>van Haelst, Mieke</creatorcontrib><creatorcontrib>van Koningsbruggen, Silvana</creatorcontrib><creatorcontrib>Hess, Daniel</creatorcontrib><creatorcontrib>Smallwood, Sebastien A.</creatorcontrib><creatorcontrib>Rivière, Jean-Baptiste</creatorcontrib><creatorcontrib>Faivre, Laurence</creatorcontrib><creatorcontrib>Betschinger, Joerg</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Cell stem cell</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Villegas, Florian</au><au>Lehalle, Daphné</au><au>Mayer, Daniela</au><au>Rittirsch, Melanie</au><au>Stadler, Michael B.</au><au>Zinner, Marietta</au><au>Olivieri, Daniel</au><au>Vabres, Pierre</au><au>Duplomb-Jego, Laurence</au><au>De Bont, Eveline S.J.M.</au><au>Duffourd, Yannis</au><au>Duijkers, Floor</au><au>Avila, Magali</au><au>Geneviève, David</au><au>Houcinat, Nada</au><au>Jouan, Thibaud</au><au>Kuentz, Paul</au><au>Lichtenbelt, Klaske D.</au><au>Thauvin-Robinet, Christel</au><au>St-Onge, Judith</au><au>Thevenon, Julien</au><au>van Gassen, Koen L.I.</au><au>van Haelst, Mieke</au><au>van Koningsbruggen, Silvana</au><au>Hess, Daniel</au><au>Smallwood, Sebastien A.</au><au>Rivière, Jean-Baptiste</au><au>Faivre, Laurence</au><au>Betschinger, Joerg</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lysosomal Signaling Licenses Embryonic Stem Cell Differentiation via Inactivation of Tfe3</atitle><jtitle>Cell stem cell</jtitle><addtitle>Cell Stem Cell</addtitle><date>2019-02-07</date><risdate>2019</risdate><volume>24</volume><issue>2</issue><spage>257</spage><epage>270.e8</epage><pages>257-270.e8</pages><issn>1934-5909</issn><eissn>1875-9777</eissn><abstract>Self-renewal and differentiation of pluripotent murine embryonic stem cells (ESCs) is regulated by extrinsic signaling pathways. It is less clear whether cellular metabolism instructs developmental progression. In an unbiased genome-wide CRISPR/Cas9 screen, we identified components of a conserved amino-acid-sensing pathway as critical drivers of ESC differentiation. Functional analysis revealed that lysosome activity, the Ragulator protein complex, and the tumor-suppressor protein Folliculin enable the Rag GTPases C and D to bind and seclude the bHLH transcription factor Tfe3 in the cytoplasm. In contrast, ectopic nuclear Tfe3 represses specific developmental and metabolic transcriptional programs that are associated with peri-implantation development. We show differentiation-specific and non-canonical regulation of Rag GTPase in ESCs and, importantly, identify point mutations in a Tfe3 domain required for cytoplasmic inactivation as potentially causal for a human developmental disorder. Our work reveals an instructive and biomedically relevant role of metabolic signaling in licensing embryonic cell fate transitions.
[Display omitted]
•Genome-wide CRISPR/Cas9 screen for differentiation resistance in mouse ESCs•Lysosomal Rag GTPase signaling inactivates Tfe3 to license exit from self-renewal•Rag GTPase regulation in steady-state cells and starvation is distinct•Tfe3 inactivation mutations found in a human mosaic developmental disorder
Villegas et al. identify mouse embryonic stem cell differentiation drivers in a genome-wide CRISPR/Cas9 screen. The majority of these are part of a lysosomal signaling pathway that licenses differentiation by inactivating the transcription factor Tfe3. The authors discover lysosomal-signaling-insensitive Tfe3 mutations as potentially causal for a human developmental disorder.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>30595499</pmid><doi>10.1016/j.stem.2018.11.021</doi><orcidid>https://orcid.org/0000-0002-2193-8685</orcidid><orcidid>https://orcid.org/0000-0001-9271-3961</orcidid><orcidid>https://orcid.org/0000-0001-6928-6287</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1934-5909 |
ispartof | Cell stem cell, 2019-02, Vol.24 (2), p.257-270.e8 |
issn | 1934-5909 1875-9777 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_02005576v1 |
source | MEDLINE; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; ScienceDirect Journals (5 years ago - present) |
subjects | Alleles Animals Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - metabolism Cell Differentiation Cell Self Renewal developmental disorder differentiation embryonic stem cell Female Flcn Genetics Genome GTP Phosphohydrolases - metabolism Human genetics Humans Life Sciences Lysosomes - metabolism Male Mice Mouse Embryonic Stem Cells - cytology Mouse Embryonic Stem Cells - metabolism mTOR Neural Stem Cells - cytology Neural Stem Cells - metabolism Phosphorylation pluripotency Point Mutation - genetics Protein Binding Rag GTPases Ragulator Signal Transduction Tfe3 Transcription, Genetic |
title | Lysosomal Signaling Licenses Embryonic Stem Cell Differentiation via Inactivation of Tfe3 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T17%3A08%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lysosomal%20Signaling%20Licenses%20Embryonic%20Stem%20Cell%20Differentiation%20via%20Inactivation%20of%20Tfe3&rft.jtitle=Cell%20stem%20cell&rft.au=Villegas,%20Florian&rft.date=2019-02-07&rft.volume=24&rft.issue=2&rft.spage=257&rft.epage=270.e8&rft.pages=257-270.e8&rft.issn=1934-5909&rft.eissn=1875-9777&rft_id=info:doi/10.1016/j.stem.2018.11.021&rft_dat=%3Cproquest_hal_p%3E2161924564%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2161924564&rft_id=info:pmid/30595499&rft_els_id=S1934590918305575&rfr_iscdi=true |