Long range numerical simulation of acoustical shock waves in a 3D moving heterogeneous and absorbing medium

Acoustical shock waves can be generated by numerous atmospheric sources, either natural – like thunder and volcanoes – or anthropic – like explosions, sonic boom or buzz saw noise. The prediction of their long-range propagation remains a numerical challenge at 3D because of the large propagation dis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics 2019-02, Vol.379, p.237-261
Hauptverfasser: Luquet, David, Marchiano, Régis, Coulouvrat, François
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 261
container_issue
container_start_page 237
container_title Journal of computational physics
container_volume 379
creator Luquet, David
Marchiano, Régis
Coulouvrat, François
description Acoustical shock waves can be generated by numerous atmospheric sources, either natural – like thunder and volcanoes – or anthropic – like explosions, sonic boom or buzz saw noise. The prediction of their long-range propagation remains a numerical challenge at 3D because of the large propagation distance to wavelength ratio, and of the high frequency / small wavelength content associated to shocks. In this paper, an original numerical method for propagating acoustical shock waves in three-dimensional heterogeneous media is proposed. Heterogeneities can result from temperature or density gradients and also from atmospheric shear and turbulent flows. The method called FLHOWARD (for FLow and Heterogeneities in a One-Way Approximation of the nonlineaR wave equation in 3D) is based on a one-way solution of a generalized nonlinear wave equation. Even though backscattering is neglected, it does not suffer from the limitations of classical ray theory nor from the angular limitations of the popular parabolic methods. The numerical approach is based on a split-step method, which has the advantage of splitting the original equation into simpler ones associated with specific physical mechanisms: diffraction, flows, heterogeneities, nonlinearities, absorption and relaxation. The method has been developed on parallel architecture for very high demanding 3D configurations using the Single Method Multiple Data paradigm. The method is validated through several test cases. A study of the lateral cut-off of the sonic boom finally illustrates the potentialities of the method for realistic cases.
doi_str_mv 10.1016/j.jcp.2018.11.041
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02004943v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021999118307861</els_id><sourcerecordid>2197881359</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-30d8dca56aa9cb789900e3b8bc7dc1ec3d3a1f0d44e82dd5a9c123c0c482f8123</originalsourceid><addsrcrecordid>eNp9kMFO3DAQhq2KSl0oD9CbpZ56SJhJsru2ekIUCtJKXOBsOfZk12Fjb-1kEW-PV6k4crLl-f5f44-xHwglAq6u-rI3h7ICFCViCQ1-YQsECUW1xtUZWwBUWEgp8Rs7T6kHALFsxIK9bILf8qj9lrifBorO6D1Pbpj2enTB89BxbcKUxnmwC-aFv-ojJe4817z-w4dwdLljRyPFsCVPmebaW67bFGJ7mg1k3TR8Z187vU90-f-8YM93t08398Xm8e_DzfWmMPVSjkUNVlijlyutpWnXQkoAqlvRmrU1SKa2tcYObNOQqKxdZgqr2oBpRNWJfL1gv-bend6rQ3SDjm8qaKfurzfq9AYVQCOb-oiZ_Tmzhxj-TZRG1Ycp-ryeqlCuhcC8U6ZwpkwMKUXqPmoR1Mm_6lX2r07-FaLK_nPm95yh_NWjo6iSceRNVhHJjMoG90n6HfIIjiQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2197881359</pqid></control><display><type>article</type><title>Long range numerical simulation of acoustical shock waves in a 3D moving heterogeneous and absorbing medium</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Luquet, David ; Marchiano, Régis ; Coulouvrat, François</creator><creatorcontrib>Luquet, David ; Marchiano, Régis ; Coulouvrat, François</creatorcontrib><description>Acoustical shock waves can be generated by numerous atmospheric sources, either natural – like thunder and volcanoes – or anthropic – like explosions, sonic boom or buzz saw noise. The prediction of their long-range propagation remains a numerical challenge at 3D because of the large propagation distance to wavelength ratio, and of the high frequency / small wavelength content associated to shocks. In this paper, an original numerical method for propagating acoustical shock waves in three-dimensional heterogeneous media is proposed. Heterogeneities can result from temperature or density gradients and also from atmospheric shear and turbulent flows. The method called FLHOWARD (for FLow and Heterogeneities in a One-Way Approximation of the nonlineaR wave equation in 3D) is based on a one-way solution of a generalized nonlinear wave equation. Even though backscattering is neglected, it does not suffer from the limitations of classical ray theory nor from the angular limitations of the popular parabolic methods. The numerical approach is based on a split-step method, which has the advantage of splitting the original equation into simpler ones associated with specific physical mechanisms: diffraction, flows, heterogeneities, nonlinearities, absorption and relaxation. The method has been developed on parallel architecture for very high demanding 3D configurations using the Single Method Multiple Data paradigm. The method is validated through several test cases. A study of the lateral cut-off of the sonic boom finally illustrates the potentialities of the method for realistic cases.</description><identifier>ISSN: 0021-9991</identifier><identifier>EISSN: 1090-2716</identifier><identifier>DOI: 10.1016/j.jcp.2018.11.041</identifier><language>eng</language><publisher>Cambridge: Elsevier Inc</publisher><subject>Acoustic absorption ; Acoustic noise ; Acoustics ; Atmospheric propagation ; Backscattering ; Computational fluid dynamics ; Computational physics ; Computer simulation ; Density gradients ; Engineering Sciences ; Explosions ; Noise prediction ; Noise propagation ; Nonlinear acoustics ; Numerical methods ; One way method ; Operator splitting ; Shock wave propagation ; Shock waves ; Sonic booms ; Wave equations ; Weak shocks</subject><ispartof>Journal of computational physics, 2019-02, Vol.379, p.237-261</ispartof><rights>2018 Elsevier Inc.</rights><rights>Copyright Elsevier Science Ltd. Feb 15, 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-30d8dca56aa9cb789900e3b8bc7dc1ec3d3a1f0d44e82dd5a9c123c0c482f8123</citedby><cites>FETCH-LOGICAL-c359t-30d8dca56aa9cb789900e3b8bc7dc1ec3d3a1f0d44e82dd5a9c123c0c482f8123</cites><orcidid>0000-0001-9716-8034</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jcp.2018.11.041$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.sorbonne-universite.fr/hal-02004943$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Luquet, David</creatorcontrib><creatorcontrib>Marchiano, Régis</creatorcontrib><creatorcontrib>Coulouvrat, François</creatorcontrib><title>Long range numerical simulation of acoustical shock waves in a 3D moving heterogeneous and absorbing medium</title><title>Journal of computational physics</title><description>Acoustical shock waves can be generated by numerous atmospheric sources, either natural – like thunder and volcanoes – or anthropic – like explosions, sonic boom or buzz saw noise. The prediction of their long-range propagation remains a numerical challenge at 3D because of the large propagation distance to wavelength ratio, and of the high frequency / small wavelength content associated to shocks. In this paper, an original numerical method for propagating acoustical shock waves in three-dimensional heterogeneous media is proposed. Heterogeneities can result from temperature or density gradients and also from atmospheric shear and turbulent flows. The method called FLHOWARD (for FLow and Heterogeneities in a One-Way Approximation of the nonlineaR wave equation in 3D) is based on a one-way solution of a generalized nonlinear wave equation. Even though backscattering is neglected, it does not suffer from the limitations of classical ray theory nor from the angular limitations of the popular parabolic methods. The numerical approach is based on a split-step method, which has the advantage of splitting the original equation into simpler ones associated with specific physical mechanisms: diffraction, flows, heterogeneities, nonlinearities, absorption and relaxation. The method has been developed on parallel architecture for very high demanding 3D configurations using the Single Method Multiple Data paradigm. The method is validated through several test cases. A study of the lateral cut-off of the sonic boom finally illustrates the potentialities of the method for realistic cases.</description><subject>Acoustic absorption</subject><subject>Acoustic noise</subject><subject>Acoustics</subject><subject>Atmospheric propagation</subject><subject>Backscattering</subject><subject>Computational fluid dynamics</subject><subject>Computational physics</subject><subject>Computer simulation</subject><subject>Density gradients</subject><subject>Engineering Sciences</subject><subject>Explosions</subject><subject>Noise prediction</subject><subject>Noise propagation</subject><subject>Nonlinear acoustics</subject><subject>Numerical methods</subject><subject>One way method</subject><subject>Operator splitting</subject><subject>Shock wave propagation</subject><subject>Shock waves</subject><subject>Sonic booms</subject><subject>Wave equations</subject><subject>Weak shocks</subject><issn>0021-9991</issn><issn>1090-2716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNp9kMFO3DAQhq2KSl0oD9CbpZ56SJhJsru2ekIUCtJKXOBsOfZk12Fjb-1kEW-PV6k4crLl-f5f44-xHwglAq6u-rI3h7ICFCViCQ1-YQsECUW1xtUZWwBUWEgp8Rs7T6kHALFsxIK9bILf8qj9lrifBorO6D1Pbpj2enTB89BxbcKUxnmwC-aFv-ojJe4817z-w4dwdLljRyPFsCVPmebaW67bFGJ7mg1k3TR8Z187vU90-f-8YM93t08398Xm8e_DzfWmMPVSjkUNVlijlyutpWnXQkoAqlvRmrU1SKa2tcYObNOQqKxdZgqr2oBpRNWJfL1gv-bend6rQ3SDjm8qaKfurzfq9AYVQCOb-oiZ_Tmzhxj-TZRG1Ycp-ryeqlCuhcC8U6ZwpkwMKUXqPmoR1Mm_6lX2r07-FaLK_nPm95yh_NWjo6iSceRNVhHJjMoG90n6HfIIjiQ</recordid><startdate>20190215</startdate><enddate>20190215</enddate><creator>Luquet, David</creator><creator>Marchiano, Régis</creator><creator>Coulouvrat, François</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-9716-8034</orcidid></search><sort><creationdate>20190215</creationdate><title>Long range numerical simulation of acoustical shock waves in a 3D moving heterogeneous and absorbing medium</title><author>Luquet, David ; Marchiano, Régis ; Coulouvrat, François</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-30d8dca56aa9cb789900e3b8bc7dc1ec3d3a1f0d44e82dd5a9c123c0c482f8123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acoustic absorption</topic><topic>Acoustic noise</topic><topic>Acoustics</topic><topic>Atmospheric propagation</topic><topic>Backscattering</topic><topic>Computational fluid dynamics</topic><topic>Computational physics</topic><topic>Computer simulation</topic><topic>Density gradients</topic><topic>Engineering Sciences</topic><topic>Explosions</topic><topic>Noise prediction</topic><topic>Noise propagation</topic><topic>Nonlinear acoustics</topic><topic>Numerical methods</topic><topic>One way method</topic><topic>Operator splitting</topic><topic>Shock wave propagation</topic><topic>Shock waves</topic><topic>Sonic booms</topic><topic>Wave equations</topic><topic>Weak shocks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luquet, David</creatorcontrib><creatorcontrib>Marchiano, Régis</creatorcontrib><creatorcontrib>Coulouvrat, François</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of computational physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luquet, David</au><au>Marchiano, Régis</au><au>Coulouvrat, François</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Long range numerical simulation of acoustical shock waves in a 3D moving heterogeneous and absorbing medium</atitle><jtitle>Journal of computational physics</jtitle><date>2019-02-15</date><risdate>2019</risdate><volume>379</volume><spage>237</spage><epage>261</epage><pages>237-261</pages><issn>0021-9991</issn><eissn>1090-2716</eissn><abstract>Acoustical shock waves can be generated by numerous atmospheric sources, either natural – like thunder and volcanoes – or anthropic – like explosions, sonic boom or buzz saw noise. The prediction of their long-range propagation remains a numerical challenge at 3D because of the large propagation distance to wavelength ratio, and of the high frequency / small wavelength content associated to shocks. In this paper, an original numerical method for propagating acoustical shock waves in three-dimensional heterogeneous media is proposed. Heterogeneities can result from temperature or density gradients and also from atmospheric shear and turbulent flows. The method called FLHOWARD (for FLow and Heterogeneities in a One-Way Approximation of the nonlineaR wave equation in 3D) is based on a one-way solution of a generalized nonlinear wave equation. Even though backscattering is neglected, it does not suffer from the limitations of classical ray theory nor from the angular limitations of the popular parabolic methods. The numerical approach is based on a split-step method, which has the advantage of splitting the original equation into simpler ones associated with specific physical mechanisms: diffraction, flows, heterogeneities, nonlinearities, absorption and relaxation. The method has been developed on parallel architecture for very high demanding 3D configurations using the Single Method Multiple Data paradigm. The method is validated through several test cases. A study of the lateral cut-off of the sonic boom finally illustrates the potentialities of the method for realistic cases.</abstract><cop>Cambridge</cop><pub>Elsevier Inc</pub><doi>10.1016/j.jcp.2018.11.041</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0001-9716-8034</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9991
ispartof Journal of computational physics, 2019-02, Vol.379, p.237-261
issn 0021-9991
1090-2716
language eng
recordid cdi_hal_primary_oai_HAL_hal_02004943v1
source Elsevier ScienceDirect Journals Complete
subjects Acoustic absorption
Acoustic noise
Acoustics
Atmospheric propagation
Backscattering
Computational fluid dynamics
Computational physics
Computer simulation
Density gradients
Engineering Sciences
Explosions
Noise prediction
Noise propagation
Nonlinear acoustics
Numerical methods
One way method
Operator splitting
Shock wave propagation
Shock waves
Sonic booms
Wave equations
Weak shocks
title Long range numerical simulation of acoustical shock waves in a 3D moving heterogeneous and absorbing medium
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T08%3A14%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Long%20range%20numerical%20simulation%20of%20acoustical%20shock%20waves%20in%20a%203D%20moving%20heterogeneous%20and%20absorbing%20medium&rft.jtitle=Journal%20of%20computational%20physics&rft.au=Luquet,%20David&rft.date=2019-02-15&rft.volume=379&rft.spage=237&rft.epage=261&rft.pages=237-261&rft.issn=0021-9991&rft.eissn=1090-2716&rft_id=info:doi/10.1016/j.jcp.2018.11.041&rft_dat=%3Cproquest_hal_p%3E2197881359%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2197881359&rft_id=info:pmid/&rft_els_id=S0021999118307861&rfr_iscdi=true