Non‐affine fiber kinematics in arterial mechanics: a continuum micromechanical investigation

There is growing experimental evidence for non‐affine deformations occurring in different types of fibrous soft tissues; meaning that the fiber orientations do not follow the macroscopic deformation gradient. Suitable mathematical modeling of this phenomenon is an open challenge, which we here tackl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Zeitschrift für angewandte Mathematik und Mechanik 2018-12, Vol.98 (12), p.2101-2121
Hauptverfasser: Morin, Claire, Avril, Stéphane, Hellmich, Christian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2121
container_issue 12
container_start_page 2101
container_title Zeitschrift für angewandte Mathematik und Mechanik
container_volume 98
creator Morin, Claire
Avril, Stéphane
Hellmich, Christian
description There is growing experimental evidence for non‐affine deformations occurring in different types of fibrous soft tissues; meaning that the fiber orientations do not follow the macroscopic deformation gradient. Suitable mathematical modeling of this phenomenon is an open challenge, which we here tackle in the framework of continuum micromechanics. From a rate‐based analogon of Eshelby's inhomogeneity problem, we derive strain and spin concentration tensors relating macroscopic strain rate tensors applied to the boundaries of a Representative Volume Element (RVE), to strain rates and spins within the tissue microstructure, in particular those associated with fiber rotations due to external mechanical loading. After presenting suitable algorithms for integrating the resulting rate‐type governing equations, a first relevance check of the novel modeling approach is undertaken, by comparison of model results to recent experiments performed on the adventitia layer of rabbit carotid tissue. There is growing experimental evidence for non‐affine deformations occurring in different types of fibrous soft tissues; meaning that the fiber orientations do not follow the macroscopic deformation gradient. Suitable mathematical modeling of this phenomenon is an open challenge, which we here tackle in the framework of continuum micromechanics. From a rate‐based analogon of Eshelby's inhomogeneity problem, we derive strain and spin concentration tensors relating macroscopic strain rate tensors applied to the boundaries of a Representative Volume Element (RVE), to strain rates and spins within the tissue microstructure, in particular those associated with fiber rotations due to external mechanical loading. After presenting suitable algorithms for integrating the resulting rate‐type governing equations, a first relevance check of the novel modeling approach is undertaken, by comparison of model results to recent experiments performed on the adventitia layer of rabbit carotid tissue.
doi_str_mv 10.1002/zamm.201700360
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02004904v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2154489113</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3910-e710bfdbc318522cc2ba92fb7d977020aabab1ea57690dc076c2e6cb06b53af3</originalsourceid><addsrcrecordid>eNqFkL1OwzAUhS0EEqWwMkdiYki5dv5qtqoCitTCwsSAde061CVxipMUlYlH4Bl5ElwFysh0r46_c3R9CDmlMKAA7OIdy3LAgGYAUQp7pEcTRsMYgO6THkAch4yl2SE5qusleJXTqEee7ir79fGJeW6sDnIjtQte_FpiY1QdGBuga7QzWASlVgu0Xr0MMFCVbYxt2zIojXLV75vHjF3rujHPPqCyx-Qgx6LWJz-zTx6urx7Gk3B6f3M7Hk1DFXEKoc4oyHwuVUSHCWNKMYmc5TKb8ywDBogSJdWYZCmHuYIsVUynSkIqkwjzqE_Ou9gFFmLlTIluIyo0YjKaiq3mMyDmEK-pZ886duWq19afKpZV66y_TjCaxPGQUxp5atBR_nN17XS-i6UgtnWLbd1iV7c38M7wZgq9-YcWj6PZ7M_7DUhThfo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2154489113</pqid></control><display><type>article</type><title>Non‐affine fiber kinematics in arterial mechanics: a continuum micromechanical investigation</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Morin, Claire ; Avril, Stéphane ; Hellmich, Christian</creator><creatorcontrib>Morin, Claire ; Avril, Stéphane ; Hellmich, Christian</creatorcontrib><description>There is growing experimental evidence for non‐affine deformations occurring in different types of fibrous soft tissues; meaning that the fiber orientations do not follow the macroscopic deformation gradient. Suitable mathematical modeling of this phenomenon is an open challenge, which we here tackle in the framework of continuum micromechanics. From a rate‐based analogon of Eshelby's inhomogeneity problem, we derive strain and spin concentration tensors relating macroscopic strain rate tensors applied to the boundaries of a Representative Volume Element (RVE), to strain rates and spins within the tissue microstructure, in particular those associated with fiber rotations due to external mechanical loading. After presenting suitable algorithms for integrating the resulting rate‐type governing equations, a first relevance check of the novel modeling approach is undertaken, by comparison of model results to recent experiments performed on the adventitia layer of rabbit carotid tissue. There is growing experimental evidence for non‐affine deformations occurring in different types of fibrous soft tissues; meaning that the fiber orientations do not follow the macroscopic deformation gradient. Suitable mathematical modeling of this phenomenon is an open challenge, which we here tackle in the framework of continuum micromechanics. From a rate‐based analogon of Eshelby's inhomogeneity problem, we derive strain and spin concentration tensors relating macroscopic strain rate tensors applied to the boundaries of a Representative Volume Element (RVE), to strain rates and spins within the tissue microstructure, in particular those associated with fiber rotations due to external mechanical loading. After presenting suitable algorithms for integrating the resulting rate‐type governing equations, a first relevance check of the novel modeling approach is undertaken, by comparison of model results to recent experiments performed on the adventitia layer of rabbit carotid tissue.</description><identifier>ISSN: 0044-2267</identifier><identifier>EISSN: 1521-4001</identifier><identifier>DOI: 10.1002/zamm.201700360</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Biomechanics ; Deformation ; Inhomogeneity ; Kinematics ; large fiber rotations ; large strain continuum micromechanics ; Mathematical analysis ; Mechanics ; Micromechanics ; Physics ; Soft tissues ; spin concentration tensor ; Strain rate ; Tensors</subject><ispartof>Zeitschrift für angewandte Mathematik und Mechanik, 2018-12, Vol.98 (12), p.2101-2121</ispartof><rights>2018 The Authors. Published by Wiley‐VCH Verlag GmbH &amp; Co. KGaA</rights><rights>2018 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3910-e710bfdbc318522cc2ba92fb7d977020aabab1ea57690dc076c2e6cb06b53af3</citedby><cites>FETCH-LOGICAL-c3910-e710bfdbc318522cc2ba92fb7d977020aabab1ea57690dc076c2e6cb06b53af3</cites><orcidid>0000-0001-9813-3933 ; 0000-0002-8604-7736</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fzamm.201700360$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fzamm.201700360$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,882,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02004904$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Morin, Claire</creatorcontrib><creatorcontrib>Avril, Stéphane</creatorcontrib><creatorcontrib>Hellmich, Christian</creatorcontrib><title>Non‐affine fiber kinematics in arterial mechanics: a continuum micromechanical investigation</title><title>Zeitschrift für angewandte Mathematik und Mechanik</title><description>There is growing experimental evidence for non‐affine deformations occurring in different types of fibrous soft tissues; meaning that the fiber orientations do not follow the macroscopic deformation gradient. Suitable mathematical modeling of this phenomenon is an open challenge, which we here tackle in the framework of continuum micromechanics. From a rate‐based analogon of Eshelby's inhomogeneity problem, we derive strain and spin concentration tensors relating macroscopic strain rate tensors applied to the boundaries of a Representative Volume Element (RVE), to strain rates and spins within the tissue microstructure, in particular those associated with fiber rotations due to external mechanical loading. After presenting suitable algorithms for integrating the resulting rate‐type governing equations, a first relevance check of the novel modeling approach is undertaken, by comparison of model results to recent experiments performed on the adventitia layer of rabbit carotid tissue. There is growing experimental evidence for non‐affine deformations occurring in different types of fibrous soft tissues; meaning that the fiber orientations do not follow the macroscopic deformation gradient. Suitable mathematical modeling of this phenomenon is an open challenge, which we here tackle in the framework of continuum micromechanics. From a rate‐based analogon of Eshelby's inhomogeneity problem, we derive strain and spin concentration tensors relating macroscopic strain rate tensors applied to the boundaries of a Representative Volume Element (RVE), to strain rates and spins within the tissue microstructure, in particular those associated with fiber rotations due to external mechanical loading. After presenting suitable algorithms for integrating the resulting rate‐type governing equations, a first relevance check of the novel modeling approach is undertaken, by comparison of model results to recent experiments performed on the adventitia layer of rabbit carotid tissue.</description><subject>Biomechanics</subject><subject>Deformation</subject><subject>Inhomogeneity</subject><subject>Kinematics</subject><subject>large fiber rotations</subject><subject>large strain continuum micromechanics</subject><subject>Mathematical analysis</subject><subject>Mechanics</subject><subject>Micromechanics</subject><subject>Physics</subject><subject>Soft tissues</subject><subject>spin concentration tensor</subject><subject>Strain rate</subject><subject>Tensors</subject><issn>0044-2267</issn><issn>1521-4001</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkL1OwzAUhS0EEqWwMkdiYki5dv5qtqoCitTCwsSAde061CVxipMUlYlH4Bl5ElwFysh0r46_c3R9CDmlMKAA7OIdy3LAgGYAUQp7pEcTRsMYgO6THkAch4yl2SE5qusleJXTqEee7ir79fGJeW6sDnIjtQte_FpiY1QdGBuga7QzWASlVgu0Xr0MMFCVbYxt2zIojXLV75vHjF3rujHPPqCyx-Qgx6LWJz-zTx6urx7Gk3B6f3M7Hk1DFXEKoc4oyHwuVUSHCWNKMYmc5TKb8ywDBogSJdWYZCmHuYIsVUynSkIqkwjzqE_Ou9gFFmLlTIluIyo0YjKaiq3mMyDmEK-pZ886duWq19afKpZV66y_TjCaxPGQUxp5atBR_nN17XS-i6UgtnWLbd1iV7c38M7wZgq9-YcWj6PZ7M_7DUhThfo</recordid><startdate>201812</startdate><enddate>201812</enddate><creator>Morin, Claire</creator><creator>Avril, Stéphane</creator><creator>Hellmich, Christian</creator><general>Wiley Subscription Services, Inc</general><general>Wiley-VCH Verlag</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-9813-3933</orcidid><orcidid>https://orcid.org/0000-0002-8604-7736</orcidid></search><sort><creationdate>201812</creationdate><title>Non‐affine fiber kinematics in arterial mechanics: a continuum micromechanical investigation</title><author>Morin, Claire ; Avril, Stéphane ; Hellmich, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3910-e710bfdbc318522cc2ba92fb7d977020aabab1ea57690dc076c2e6cb06b53af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biomechanics</topic><topic>Deformation</topic><topic>Inhomogeneity</topic><topic>Kinematics</topic><topic>large fiber rotations</topic><topic>large strain continuum micromechanics</topic><topic>Mathematical analysis</topic><topic>Mechanics</topic><topic>Micromechanics</topic><topic>Physics</topic><topic>Soft tissues</topic><topic>spin concentration tensor</topic><topic>Strain rate</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morin, Claire</creatorcontrib><creatorcontrib>Avril, Stéphane</creatorcontrib><creatorcontrib>Hellmich, Christian</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Zeitschrift für angewandte Mathematik und Mechanik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morin, Claire</au><au>Avril, Stéphane</au><au>Hellmich, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non‐affine fiber kinematics in arterial mechanics: a continuum micromechanical investigation</atitle><jtitle>Zeitschrift für angewandte Mathematik und Mechanik</jtitle><date>2018-12</date><risdate>2018</risdate><volume>98</volume><issue>12</issue><spage>2101</spage><epage>2121</epage><pages>2101-2121</pages><issn>0044-2267</issn><eissn>1521-4001</eissn><abstract>There is growing experimental evidence for non‐affine deformations occurring in different types of fibrous soft tissues; meaning that the fiber orientations do not follow the macroscopic deformation gradient. Suitable mathematical modeling of this phenomenon is an open challenge, which we here tackle in the framework of continuum micromechanics. From a rate‐based analogon of Eshelby's inhomogeneity problem, we derive strain and spin concentration tensors relating macroscopic strain rate tensors applied to the boundaries of a Representative Volume Element (RVE), to strain rates and spins within the tissue microstructure, in particular those associated with fiber rotations due to external mechanical loading. After presenting suitable algorithms for integrating the resulting rate‐type governing equations, a first relevance check of the novel modeling approach is undertaken, by comparison of model results to recent experiments performed on the adventitia layer of rabbit carotid tissue. There is growing experimental evidence for non‐affine deformations occurring in different types of fibrous soft tissues; meaning that the fiber orientations do not follow the macroscopic deformation gradient. Suitable mathematical modeling of this phenomenon is an open challenge, which we here tackle in the framework of continuum micromechanics. From a rate‐based analogon of Eshelby's inhomogeneity problem, we derive strain and spin concentration tensors relating macroscopic strain rate tensors applied to the boundaries of a Representative Volume Element (RVE), to strain rates and spins within the tissue microstructure, in particular those associated with fiber rotations due to external mechanical loading. After presenting suitable algorithms for integrating the resulting rate‐type governing equations, a first relevance check of the novel modeling approach is undertaken, by comparison of model results to recent experiments performed on the adventitia layer of rabbit carotid tissue.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/zamm.201700360</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0001-9813-3933</orcidid><orcidid>https://orcid.org/0000-0002-8604-7736</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0044-2267
ispartof Zeitschrift für angewandte Mathematik und Mechanik, 2018-12, Vol.98 (12), p.2101-2121
issn 0044-2267
1521-4001
language eng
recordid cdi_hal_primary_oai_HAL_hal_02004904v1
source Wiley Online Library Journals Frontfile Complete
subjects Biomechanics
Deformation
Inhomogeneity
Kinematics
large fiber rotations
large strain continuum micromechanics
Mathematical analysis
Mechanics
Micromechanics
Physics
Soft tissues
spin concentration tensor
Strain rate
Tensors
title Non‐affine fiber kinematics in arterial mechanics: a continuum micromechanical investigation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T05%3A30%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non%E2%80%90affine%20fiber%20kinematics%20in%20arterial%20mechanics:%20a%20continuum%20micromechanical%20investigation&rft.jtitle=Zeitschrift%20f%C3%BCr%20angewandte%20Mathematik%20und%20Mechanik&rft.au=Morin,%20Claire&rft.date=2018-12&rft.volume=98&rft.issue=12&rft.spage=2101&rft.epage=2121&rft.pages=2101-2121&rft.issn=0044-2267&rft.eissn=1521-4001&rft_id=info:doi/10.1002/zamm.201700360&rft_dat=%3Cproquest_hal_p%3E2154489113%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2154489113&rft_id=info:pmid/&rfr_iscdi=true