LEA: An R package for landscape and ecological association studies

Summary Based on population genomic and environmental data, genomewide ecological association studies aim at detecting allele frequencies that exhibit significant statistical association with ecological gradients. Ecological association studies can provide lists of genetic polymorphisms that are pot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Methods in ecology and evolution 2015-08, Vol.6 (8), p.925-929
Hauptverfasser: Frichot, Eric, François, Olivier, O'Meara, Brian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 929
container_issue 8
container_start_page 925
container_title Methods in ecology and evolution
container_volume 6
creator Frichot, Eric
François, Olivier
O'Meara, Brian
description Summary Based on population genomic and environmental data, genomewide ecological association studies aim at detecting allele frequencies that exhibit significant statistical association with ecological gradients. Ecological association studies can provide lists of genetic polymorphisms that are potentially involved in local adaptation to environmental conditions through natural selection. Here, we present the R package LEA that enables users to run ecological association studies from the R command line. The package can perform analyses of population structure and genome scans for adaptive alleles from large genomic data sets. It derives advantages from R programming functionalities to adjust significance values for multiple testing issues and to visualize results. This note also illustrates the main steps of ecological association studies and the typical use of LEA for analysing data sets based on R commands.
doi_str_mv 10.1111/2041-210X.12382
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_02004815v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3777290281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6342-da0fa7ae255cd28d46bf730626761fa2166798badd3cece2c8de782749c236053</originalsourceid><addsrcrecordid>eNqFkcFLwzAUxosoOObOXgNe9NAteWmT1lsd1QkVQRS8hSxNZ2fX1GZV9t-bWhniQd8lj8fv-3gvn-edEjwlrmaAA-IDwc9TAjSCA2-0nxz-6I-9ibVr7IpGMYZg5F1laXKJkho9oEaqV7nSqDAtqmSdWyUbjVyDtDKVWZVKVkhaa1Qpt6Wpkd12eantiXdUyMrqyfc79p6u08f5ws_ub27nSeYrRgPwc4kLyaWGMFQ5RHnAlgWnmAHjjBQSCGM8jpYyz6nSSoOKcs0j4EGsgDIc0rF3Mfi-yEo0bbmR7U4YWYpFkol-hgHjICLhO3Hs-cA2rXnrtN2KTWmVrtxd2nRWEI5jEgMNwaFnv9C16draXSKA8gAwDVn8F-W83G9GnPRes4FSrbG21cV-T4JFH5TooxB9FOIrKKdgg-KjrPTuP1zcpSkdhJ8VlJB8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1703898712</pqid></control><display><type>article</type><title>LEA: An R package for landscape and ecological association studies</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Alma/SFX Local Collection</source><creator>Frichot, Eric ; François, Olivier ; O'Meara, Brian</creator><creatorcontrib>Frichot, Eric ; François, Olivier ; O'Meara, Brian</creatorcontrib><description>Summary Based on population genomic and environmental data, genomewide ecological association studies aim at detecting allele frequencies that exhibit significant statistical association with ecological gradients. Ecological association studies can provide lists of genetic polymorphisms that are potentially involved in local adaptation to environmental conditions through natural selection. Here, we present the R package LEA that enables users to run ecological association studies from the R command line. The package can perform analyses of population structure and genome scans for adaptive alleles from large genomic data sets. It derives advantages from R programming functionalities to adjust significance values for multiple testing issues and to visualize results. This note also illustrates the main steps of ecological association studies and the typical use of LEA for analysing data sets based on R commands.</description><identifier>ISSN: 2041-210X</identifier><identifier>EISSN: 2041-210X</identifier><identifier>DOI: 10.1111/2041-210X.12382</identifier><language>eng</language><publisher>London: John Wiley &amp; Sons, Inc</publisher><subject>Alleles ; control of false discoveries ; Datasets ; Ecological association ; ecological association studies ; Ecological effects ; Environmental conditions ; Gene frequency ; Genetics ; genome scans for signature of local adaptation ; Genomes ; Genotype &amp; phenotype ; inference of population structure ; Life Sciences ; Natural selection ; Polymorphism ; Population genetics ; Population structure ; Population studies ; Populations and Evolution ; Statistical analysis</subject><ispartof>Methods in ecology and evolution, 2015-08, Vol.6 (8), p.925-929</ispartof><rights>2015 The Authors. Methods in Ecology and Evolution © 2015 British Ecological Society</rights><rights>Copyright © 2015 British Ecological Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6342-da0fa7ae255cd28d46bf730626761fa2166798badd3cece2c8de782749c236053</citedby><cites>FETCH-LOGICAL-c6342-da0fa7ae255cd28d46bf730626761fa2166798badd3cece2c8de782749c236053</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F2041-210X.12382$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F2041-210X.12382$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://hal.science/hal-02004815$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Frichot, Eric</creatorcontrib><creatorcontrib>François, Olivier</creatorcontrib><creatorcontrib>O'Meara, Brian</creatorcontrib><title>LEA: An R package for landscape and ecological association studies</title><title>Methods in ecology and evolution</title><description>Summary Based on population genomic and environmental data, genomewide ecological association studies aim at detecting allele frequencies that exhibit significant statistical association with ecological gradients. Ecological association studies can provide lists of genetic polymorphisms that are potentially involved in local adaptation to environmental conditions through natural selection. Here, we present the R package LEA that enables users to run ecological association studies from the R command line. The package can perform analyses of population structure and genome scans for adaptive alleles from large genomic data sets. It derives advantages from R programming functionalities to adjust significance values for multiple testing issues and to visualize results. This note also illustrates the main steps of ecological association studies and the typical use of LEA for analysing data sets based on R commands.</description><subject>Alleles</subject><subject>control of false discoveries</subject><subject>Datasets</subject><subject>Ecological association</subject><subject>ecological association studies</subject><subject>Ecological effects</subject><subject>Environmental conditions</subject><subject>Gene frequency</subject><subject>Genetics</subject><subject>genome scans for signature of local adaptation</subject><subject>Genomes</subject><subject>Genotype &amp; phenotype</subject><subject>inference of population structure</subject><subject>Life Sciences</subject><subject>Natural selection</subject><subject>Polymorphism</subject><subject>Population genetics</subject><subject>Population structure</subject><subject>Population studies</subject><subject>Populations and Evolution</subject><subject>Statistical analysis</subject><issn>2041-210X</issn><issn>2041-210X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqFkcFLwzAUxosoOObOXgNe9NAteWmT1lsd1QkVQRS8hSxNZ2fX1GZV9t-bWhniQd8lj8fv-3gvn-edEjwlrmaAA-IDwc9TAjSCA2-0nxz-6I-9ibVr7IpGMYZg5F1laXKJkho9oEaqV7nSqDAtqmSdWyUbjVyDtDKVWZVKVkhaa1Qpt6Wpkd12eantiXdUyMrqyfc79p6u08f5ws_ub27nSeYrRgPwc4kLyaWGMFQ5RHnAlgWnmAHjjBQSCGM8jpYyz6nSSoOKcs0j4EGsgDIc0rF3Mfi-yEo0bbmR7U4YWYpFkol-hgHjICLhO3Hs-cA2rXnrtN2KTWmVrtxd2nRWEI5jEgMNwaFnv9C16draXSKA8gAwDVn8F-W83G9GnPRes4FSrbG21cV-T4JFH5TooxB9FOIrKKdgg-KjrPTuP1zcpSkdhJ8VlJB8</recordid><startdate>201508</startdate><enddate>201508</enddate><creator>Frichot, Eric</creator><creator>François, Olivier</creator><creator>O'Meara, Brian</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>1XC</scope></search><sort><creationdate>201508</creationdate><title>LEA: An R package for landscape and ecological association studies</title><author>Frichot, Eric ; François, Olivier ; O'Meara, Brian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6342-da0fa7ae255cd28d46bf730626761fa2166798badd3cece2c8de782749c236053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Alleles</topic><topic>control of false discoveries</topic><topic>Datasets</topic><topic>Ecological association</topic><topic>ecological association studies</topic><topic>Ecological effects</topic><topic>Environmental conditions</topic><topic>Gene frequency</topic><topic>Genetics</topic><topic>genome scans for signature of local adaptation</topic><topic>Genomes</topic><topic>Genotype &amp; phenotype</topic><topic>inference of population structure</topic><topic>Life Sciences</topic><topic>Natural selection</topic><topic>Polymorphism</topic><topic>Population genetics</topic><topic>Population structure</topic><topic>Population studies</topic><topic>Populations and Evolution</topic><topic>Statistical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Frichot, Eric</creatorcontrib><creatorcontrib>François, Olivier</creatorcontrib><creatorcontrib>O'Meara, Brian</creatorcontrib><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Methods in ecology and evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Frichot, Eric</au><au>François, Olivier</au><au>O'Meara, Brian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LEA: An R package for landscape and ecological association studies</atitle><jtitle>Methods in ecology and evolution</jtitle><date>2015-08</date><risdate>2015</risdate><volume>6</volume><issue>8</issue><spage>925</spage><epage>929</epage><pages>925-929</pages><issn>2041-210X</issn><eissn>2041-210X</eissn><abstract>Summary Based on population genomic and environmental data, genomewide ecological association studies aim at detecting allele frequencies that exhibit significant statistical association with ecological gradients. Ecological association studies can provide lists of genetic polymorphisms that are potentially involved in local adaptation to environmental conditions through natural selection. Here, we present the R package LEA that enables users to run ecological association studies from the R command line. The package can perform analyses of population structure and genome scans for adaptive alleles from large genomic data sets. It derives advantages from R programming functionalities to adjust significance values for multiple testing issues and to visualize results. This note also illustrates the main steps of ecological association studies and the typical use of LEA for analysing data sets based on R commands.</abstract><cop>London</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1111/2041-210X.12382</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-210X
ispartof Methods in ecology and evolution, 2015-08, Vol.6 (8), p.925-929
issn 2041-210X
2041-210X
language eng
recordid cdi_hal_primary_oai_HAL_hal_02004815v1
source Wiley Online Library Journals Frontfile Complete; Alma/SFX Local Collection
subjects Alleles
control of false discoveries
Datasets
Ecological association
ecological association studies
Ecological effects
Environmental conditions
Gene frequency
Genetics
genome scans for signature of local adaptation
Genomes
Genotype & phenotype
inference of population structure
Life Sciences
Natural selection
Polymorphism
Population genetics
Population structure
Population studies
Populations and Evolution
Statistical analysis
title LEA: An R package for landscape and ecological association studies
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T22%3A58%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LEA:%20An%20R%20package%20for%20landscape%20and%20ecological%20association%20studies&rft.jtitle=Methods%20in%20ecology%20and%20evolution&rft.au=Frichot,%20Eric&rft.date=2015-08&rft.volume=6&rft.issue=8&rft.spage=925&rft.epage=929&rft.pages=925-929&rft.issn=2041-210X&rft.eissn=2041-210X&rft_id=info:doi/10.1111/2041-210X.12382&rft_dat=%3Cproquest_hal_p%3E3777290281%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1703898712&rft_id=info:pmid/&rfr_iscdi=true