Variational formulation of micropolar elasticity using 3D hexahedral finite-element interpolation with incompatible modes
•Presented micropolar finite element shows improved accuracy.•The set of micropolar patch tests generalized to 3D.•Experimentally significant micropolar benchmark problems treated numerically.•Proper treatment of the applied external loading misread in the literature presented.•Excellent agreement b...
Gespeichert in:
Veröffentlicht in: | Computers & structures 2018-08, Vol.205, p.1-14 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Computers & structures |
container_volume | 205 |
creator | Grbcic, Sara Ibrahimbegovic, Adnan Jelenic, Gordan |
description | •Presented micropolar finite element shows improved accuracy.•The set of micropolar patch tests generalized to 3D.•Experimentally significant micropolar benchmark problems treated numerically.•Proper treatment of the applied external loading misread in the literature presented.•Excellent agreement between theory, experiments and the numerical analysis is achieved.
A three-dimensional micropolar elasticity is cast in terms of the rigorous variational formulation. The discrete approximation is based on hexahedral finite element using the conventional Lagrange interpolation and enhanced with incompatible modes. The proposed element convergence is checked by performing patch tests which are derived specifically for micropolar finite elements. The element enhanced performance is also demonstrated by modelling two boundary value problems with analytical solutions, both exhibiting the size-effect. The analyzed problems involve a cylindrical plate bending and pure torsion of circular cylinders, which were previously used in the experimental determination of the micropolar material parameters. The numerical results are compared against the analytical solution, and additionally against existing experiments on a polymeric foam for the pure torsion problem. The enhancement due to incompatible modes provides the needed improvement of the element performance in the bending test without negative effects in the pure-torsion test where incompatible modes are not needed. It is concluded that the proposed element is highly suitable for the numerical validation of the experimental procedure. |
doi_str_mv | 10.1016/j.compstruc.2018.04.005 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01996651v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0045794918302220</els_id><sourcerecordid>2111123165</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-4ff0f7c29a22048089b9c5396870a6d0b1ca9e7dfc39d6850ded73db846e59083</originalsourceid><addsrcrecordid>eNqFUcFu1DAQtRCVWNp-A5Y4cUgYO44TH1eFUqSVuECvlteesF4l8WI7hf17nC7qlbmM5um9p5l5hLxjUDNg8uOxtmE6pRwXW3NgfQ2iBmhfkQ3rO1VxLprXZAMg2qpTQr0hb1M6AoAUABtyfjTRm-zDbEY6hDgt4_NEw0Anb2M4hdFEiqNJ2Vufz3RJfv5Jm0_0gH_MAV1chX72GSscccI5Uz9njKvw2em3z4cCrVsWYD8inYLDdEOuBjMmvP3Xr8mP-8_f7x6q3bcvX--2u8oKLnMlhgGGznJlOAfRQ6_2yraNkn0HRjrYM2sUdm6wjXKyb8Gh6xq374XEVkHfXJMPF9-DGfUp-snEsw7G64ftTq8YMKWkbNkTK9z3F-4phl8LpqyPYYnlNUlzVoo3TLaF1V1Y5T0pRRxebBnoNRN91C-Z6DUTDUKXTIpye1FiOfjJY9TJepwtOh_RZu2C_6_HXwafnAo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2111123165</pqid></control><display><type>article</type><title>Variational formulation of micropolar elasticity using 3D hexahedral finite-element interpolation with incompatible modes</title><source>Elsevier ScienceDirect Journals Complete - AutoHoldings</source><creator>Grbcic, Sara ; Ibrahimbegovic, Adnan ; Jelenic, Gordan</creator><creatorcontrib>Grbcic, Sara ; Ibrahimbegovic, Adnan ; Jelenic, Gordan</creatorcontrib><description>•Presented micropolar finite element shows improved accuracy.•The set of micropolar patch tests generalized to 3D.•Experimentally significant micropolar benchmark problems treated numerically.•Proper treatment of the applied external loading misread in the literature presented.•Excellent agreement between theory, experiments and the numerical analysis is achieved.
A three-dimensional micropolar elasticity is cast in terms of the rigorous variational formulation. The discrete approximation is based on hexahedral finite element using the conventional Lagrange interpolation and enhanced with incompatible modes. The proposed element convergence is checked by performing patch tests which are derived specifically for micropolar finite elements. The element enhanced performance is also demonstrated by modelling two boundary value problems with analytical solutions, both exhibiting the size-effect. The analyzed problems involve a cylindrical plate bending and pure torsion of circular cylinders, which were previously used in the experimental determination of the micropolar material parameters. The numerical results are compared against the analytical solution, and additionally against existing experiments on a polymeric foam for the pure torsion problem. The enhancement due to incompatible modes provides the needed improvement of the element performance in the bending test without negative effects in the pure-torsion test where incompatible modes are not needed. It is concluded that the proposed element is highly suitable for the numerical validation of the experimental procedure.</description><identifier>ISSN: 0045-7949</identifier><identifier>EISSN: 1879-2243</identifier><identifier>DOI: 10.1016/j.compstruc.2018.04.005</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Bend tests ; Boundary value problems ; Circular cylinders ; Elasticity ; Finite element analysis ; Finite element method ; Hexahedral finite elements ; Incompatible modes ; Interpolation ; Mathematical models ; Mechanics ; Micropolar theory ; Model validation ; Patch tests ; Performance enhancement ; Physics ; Solid mechanics ; Torsion tests</subject><ispartof>Computers & structures, 2018-08, Vol.205, p.1-14</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Aug 1, 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-4ff0f7c29a22048089b9c5396870a6d0b1ca9e7dfc39d6850ded73db846e59083</citedby><cites>FETCH-LOGICAL-c426t-4ff0f7c29a22048089b9c5396870a6d0b1ca9e7dfc39d6850ded73db846e59083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compstruc.2018.04.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttps://hal.utc.fr/hal-01996651$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Grbcic, Sara</creatorcontrib><creatorcontrib>Ibrahimbegovic, Adnan</creatorcontrib><creatorcontrib>Jelenic, Gordan</creatorcontrib><title>Variational formulation of micropolar elasticity using 3D hexahedral finite-element interpolation with incompatible modes</title><title>Computers & structures</title><description>•Presented micropolar finite element shows improved accuracy.•The set of micropolar patch tests generalized to 3D.•Experimentally significant micropolar benchmark problems treated numerically.•Proper treatment of the applied external loading misread in the literature presented.•Excellent agreement between theory, experiments and the numerical analysis is achieved.
A three-dimensional micropolar elasticity is cast in terms of the rigorous variational formulation. The discrete approximation is based on hexahedral finite element using the conventional Lagrange interpolation and enhanced with incompatible modes. The proposed element convergence is checked by performing patch tests which are derived specifically for micropolar finite elements. The element enhanced performance is also demonstrated by modelling two boundary value problems with analytical solutions, both exhibiting the size-effect. The analyzed problems involve a cylindrical plate bending and pure torsion of circular cylinders, which were previously used in the experimental determination of the micropolar material parameters. The numerical results are compared against the analytical solution, and additionally against existing experiments on a polymeric foam for the pure torsion problem. The enhancement due to incompatible modes provides the needed improvement of the element performance in the bending test without negative effects in the pure-torsion test where incompatible modes are not needed. It is concluded that the proposed element is highly suitable for the numerical validation of the experimental procedure.</description><subject>Bend tests</subject><subject>Boundary value problems</subject><subject>Circular cylinders</subject><subject>Elasticity</subject><subject>Finite element analysis</subject><subject>Finite element method</subject><subject>Hexahedral finite elements</subject><subject>Incompatible modes</subject><subject>Interpolation</subject><subject>Mathematical models</subject><subject>Mechanics</subject><subject>Micropolar theory</subject><subject>Model validation</subject><subject>Patch tests</subject><subject>Performance enhancement</subject><subject>Physics</subject><subject>Solid mechanics</subject><subject>Torsion tests</subject><issn>0045-7949</issn><issn>1879-2243</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFUcFu1DAQtRCVWNp-A5Y4cUgYO44TH1eFUqSVuECvlteesF4l8WI7hf17nC7qlbmM5um9p5l5hLxjUDNg8uOxtmE6pRwXW3NgfQ2iBmhfkQ3rO1VxLprXZAMg2qpTQr0hb1M6AoAUABtyfjTRm-zDbEY6hDgt4_NEw0Anb2M4hdFEiqNJ2Vufz3RJfv5Jm0_0gH_MAV1chX72GSscccI5Uz9njKvw2em3z4cCrVsWYD8inYLDdEOuBjMmvP3Xr8mP-8_f7x6q3bcvX--2u8oKLnMlhgGGznJlOAfRQ6_2yraNkn0HRjrYM2sUdm6wjXKyb8Gh6xq374XEVkHfXJMPF9-DGfUp-snEsw7G64ftTq8YMKWkbNkTK9z3F-4phl8LpqyPYYnlNUlzVoo3TLaF1V1Y5T0pRRxebBnoNRN91C-Z6DUTDUKXTIpye1FiOfjJY9TJepwtOh_RZu2C_6_HXwafnAo</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Grbcic, Sara</creator><creator>Ibrahimbegovic, Adnan</creator><creator>Jelenic, Gordan</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20180801</creationdate><title>Variational formulation of micropolar elasticity using 3D hexahedral finite-element interpolation with incompatible modes</title><author>Grbcic, Sara ; Ibrahimbegovic, Adnan ; Jelenic, Gordan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-4ff0f7c29a22048089b9c5396870a6d0b1ca9e7dfc39d6850ded73db846e59083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bend tests</topic><topic>Boundary value problems</topic><topic>Circular cylinders</topic><topic>Elasticity</topic><topic>Finite element analysis</topic><topic>Finite element method</topic><topic>Hexahedral finite elements</topic><topic>Incompatible modes</topic><topic>Interpolation</topic><topic>Mathematical models</topic><topic>Mechanics</topic><topic>Micropolar theory</topic><topic>Model validation</topic><topic>Patch tests</topic><topic>Performance enhancement</topic><topic>Physics</topic><topic>Solid mechanics</topic><topic>Torsion tests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grbcic, Sara</creatorcontrib><creatorcontrib>Ibrahimbegovic, Adnan</creatorcontrib><creatorcontrib>Jelenic, Gordan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Computers & structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grbcic, Sara</au><au>Ibrahimbegovic, Adnan</au><au>Jelenic, Gordan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Variational formulation of micropolar elasticity using 3D hexahedral finite-element interpolation with incompatible modes</atitle><jtitle>Computers & structures</jtitle><date>2018-08-01</date><risdate>2018</risdate><volume>205</volume><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>0045-7949</issn><eissn>1879-2243</eissn><abstract>•Presented micropolar finite element shows improved accuracy.•The set of micropolar patch tests generalized to 3D.•Experimentally significant micropolar benchmark problems treated numerically.•Proper treatment of the applied external loading misread in the literature presented.•Excellent agreement between theory, experiments and the numerical analysis is achieved.
A three-dimensional micropolar elasticity is cast in terms of the rigorous variational formulation. The discrete approximation is based on hexahedral finite element using the conventional Lagrange interpolation and enhanced with incompatible modes. The proposed element convergence is checked by performing patch tests which are derived specifically for micropolar finite elements. The element enhanced performance is also demonstrated by modelling two boundary value problems with analytical solutions, both exhibiting the size-effect. The analyzed problems involve a cylindrical plate bending and pure torsion of circular cylinders, which were previously used in the experimental determination of the micropolar material parameters. The numerical results are compared against the analytical solution, and additionally against existing experiments on a polymeric foam for the pure torsion problem. The enhancement due to incompatible modes provides the needed improvement of the element performance in the bending test without negative effects in the pure-torsion test where incompatible modes are not needed. It is concluded that the proposed element is highly suitable for the numerical validation of the experimental procedure.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compstruc.2018.04.005</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0045-7949 |
ispartof | Computers & structures, 2018-08, Vol.205, p.1-14 |
issn | 0045-7949 1879-2243 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01996651v1 |
source | Elsevier ScienceDirect Journals Complete - AutoHoldings |
subjects | Bend tests Boundary value problems Circular cylinders Elasticity Finite element analysis Finite element method Hexahedral finite elements Incompatible modes Interpolation Mathematical models Mechanics Micropolar theory Model validation Patch tests Performance enhancement Physics Solid mechanics Torsion tests |
title | Variational formulation of micropolar elasticity using 3D hexahedral finite-element interpolation with incompatible modes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T10%3A27%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Variational%20formulation%20of%20micropolar%20elasticity%20using%203D%20hexahedral%20finite-element%20interpolation%20with%20incompatible%20modes&rft.jtitle=Computers%20&%20structures&rft.au=Grbcic,%20Sara&rft.date=2018-08-01&rft.volume=205&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=0045-7949&rft.eissn=1879-2243&rft_id=info:doi/10.1016/j.compstruc.2018.04.005&rft_dat=%3Cproquest_hal_p%3E2111123165%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2111123165&rft_id=info:pmid/&rft_els_id=S0045794918302220&rfr_iscdi=true |