Electrostatic-Driven Activity, Loading, Dynamics, and Stability of a Redox Enzyme on Functionalized-Gold Electrodes for Bioelectrocatalysis

The oxygen reduction reaction is the limiting step in fuel cells, and many works are in progress to find efficient cathode catalysts. Among them, bilirubin oxidases are copper-based enzymes that reduce oxygen into water with low overpotentials. The factors that ensure electrocatalytic efficiency of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS catalysis 2018-12, Vol.8 (12), p.12004-12014
Hauptverfasser: Hitaishi, Vivek Pratap, Mazurenko, Ievgen, Harb, Malek, Clément, Romain, Taris, Marion, Castano, Sabine, Duché, David, Lecomte, Sophie, Ilbert, Marianne, de Poulpiquet, Anne, Lojou, Elisabeth
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12014
container_issue 12
container_start_page 12004
container_title ACS catalysis
container_volume 8
creator Hitaishi, Vivek Pratap
Mazurenko, Ievgen
Harb, Malek
Clément, Romain
Taris, Marion
Castano, Sabine
Duché, David
Lecomte, Sophie
Ilbert, Marianne
de Poulpiquet, Anne
Lojou, Elisabeth
description The oxygen reduction reaction is the limiting step in fuel cells, and many works are in progress to find efficient cathode catalysts. Among them, bilirubin oxidases are copper-based enzymes that reduce oxygen into water with low overpotentials. The factors that ensure electrocatalytic efficiency of the enzyme in the immobilized state are not well understood, however. In this work, we use a multiple methodological approach on a wide range of pH values for protein adsorption and electrocatalysis to demonstrate the effect of electrostatic interactions on the electrical wiring, dynamics, and stability of a bilirubin oxidase adsorbed on self-assembled-monolayers on gold. We show on one hand that the global charge of the enzyme controls the loading on the interface and that the specific activity of the immobilized enzyme decreases with the enzyme coverage. On the other hand, we show that the dipole moment of the protein and the charge in the vicinity of the Cu site acting as the entry point of electrons drive the enzyme orientation. In case of weak electrostatic interactions, we demonstrate that local pH variation affects the electron transfer rate as a result of protein mobility on the surface. On the contrary, stronger electrostatic interactions destabilize the protein structure and affect the stability of the catalytic signal. These data illustrate the interplay between immobilized protein dynamics and local environment that control the efficiency of bioelectrocatalysis.
doi_str_mv 10.1021/acscatal.8b03443
format Article
fullrecord <record><control><sourceid>acs_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01994370v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>d183904858</sourcerecordid><originalsourceid>FETCH-LOGICAL-a356t-c5d35a50e8311e3357ac765b71c036aaceff33b1fb42e970c0853d8cbd1427673</originalsourceid><addsrcrecordid>eNp1kE1PwzAMhiMEEtPYnWOuSO1ImqbpjmOfSJWQ-DhXbpJCpq5BTTfR_QX-NBkdiAu-2LLf17YehK4pGVMS0VuQTkIL1TgtCItjdoYGEeU85DHj53_qSzRybkN8xDxJBRmgz0WlZdtY10JrZDhvzF7XeCpbszdtF-DMgjL1a4DnXQ1bI12AoVb4qYXCVF6BbYkBP2plP_CiPnRbjW2Nl7vab7A1VOagVbiylcKnQ0o7XNoG3xmr-873550z7gpdlFA5PTrlIXpZLp5n6zB7WN3PplkIjCdtKLliHDjRKaNUM8YFSJHwQlBJWAIgdVkyVtCyiCM9EUSSlDOVykLROBKJYEN00-99gyp_b8wWmi63YPL1NMuPPUInk5gJsqdeS3qt9Ixco8tfAyX5kX3-wz4_sfeWoLf4Sb6xu8ZjcP_LvwAqsom7</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Electrostatic-Driven Activity, Loading, Dynamics, and Stability of a Redox Enzyme on Functionalized-Gold Electrodes for Bioelectrocatalysis</title><source>ACS Publications</source><creator>Hitaishi, Vivek Pratap ; Mazurenko, Ievgen ; Harb, Malek ; Clément, Romain ; Taris, Marion ; Castano, Sabine ; Duché, David ; Lecomte, Sophie ; Ilbert, Marianne ; de Poulpiquet, Anne ; Lojou, Elisabeth</creator><creatorcontrib>Hitaishi, Vivek Pratap ; Mazurenko, Ievgen ; Harb, Malek ; Clément, Romain ; Taris, Marion ; Castano, Sabine ; Duché, David ; Lecomte, Sophie ; Ilbert, Marianne ; de Poulpiquet, Anne ; Lojou, Elisabeth</creatorcontrib><description>The oxygen reduction reaction is the limiting step in fuel cells, and many works are in progress to find efficient cathode catalysts. Among them, bilirubin oxidases are copper-based enzymes that reduce oxygen into water with low overpotentials. The factors that ensure electrocatalytic efficiency of the enzyme in the immobilized state are not well understood, however. In this work, we use a multiple methodological approach on a wide range of pH values for protein adsorption and electrocatalysis to demonstrate the effect of electrostatic interactions on the electrical wiring, dynamics, and stability of a bilirubin oxidase adsorbed on self-assembled-monolayers on gold. We show on one hand that the global charge of the enzyme controls the loading on the interface and that the specific activity of the immobilized enzyme decreases with the enzyme coverage. On the other hand, we show that the dipole moment of the protein and the charge in the vicinity of the Cu site acting as the entry point of electrons drive the enzyme orientation. In case of weak electrostatic interactions, we demonstrate that local pH variation affects the electron transfer rate as a result of protein mobility on the surface. On the contrary, stronger electrostatic interactions destabilize the protein structure and affect the stability of the catalytic signal. These data illustrate the interplay between immobilized protein dynamics and local environment that control the efficiency of bioelectrocatalysis.</description><identifier>ISSN: 2155-5435</identifier><identifier>EISSN: 2155-5435</identifier><identifier>DOI: 10.1021/acscatal.8b03443</identifier><language>eng</language><publisher>American Chemical Society</publisher><subject>Chemical Sciences ; Material chemistry</subject><ispartof>ACS catalysis, 2018-12, Vol.8 (12), p.12004-12014</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a356t-c5d35a50e8311e3357ac765b71c036aaceff33b1fb42e970c0853d8cbd1427673</citedby><cites>FETCH-LOGICAL-a356t-c5d35a50e8311e3357ac765b71c036aaceff33b1fb42e970c0853d8cbd1427673</cites><orcidid>0000-0003-2593-4670 ; 0000-0002-9070-2334 ; 0000-0001-8310-4849 ; 0000-0003-2563-3130</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acscatal.8b03443$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acscatal.8b03443$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,777,781,882,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://amu.hal.science/hal-01994370$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Hitaishi, Vivek Pratap</creatorcontrib><creatorcontrib>Mazurenko, Ievgen</creatorcontrib><creatorcontrib>Harb, Malek</creatorcontrib><creatorcontrib>Clément, Romain</creatorcontrib><creatorcontrib>Taris, Marion</creatorcontrib><creatorcontrib>Castano, Sabine</creatorcontrib><creatorcontrib>Duché, David</creatorcontrib><creatorcontrib>Lecomte, Sophie</creatorcontrib><creatorcontrib>Ilbert, Marianne</creatorcontrib><creatorcontrib>de Poulpiquet, Anne</creatorcontrib><creatorcontrib>Lojou, Elisabeth</creatorcontrib><title>Electrostatic-Driven Activity, Loading, Dynamics, and Stability of a Redox Enzyme on Functionalized-Gold Electrodes for Bioelectrocatalysis</title><title>ACS catalysis</title><addtitle>ACS Catal</addtitle><description>The oxygen reduction reaction is the limiting step in fuel cells, and many works are in progress to find efficient cathode catalysts. Among them, bilirubin oxidases are copper-based enzymes that reduce oxygen into water with low overpotentials. The factors that ensure electrocatalytic efficiency of the enzyme in the immobilized state are not well understood, however. In this work, we use a multiple methodological approach on a wide range of pH values for protein adsorption and electrocatalysis to demonstrate the effect of electrostatic interactions on the electrical wiring, dynamics, and stability of a bilirubin oxidase adsorbed on self-assembled-monolayers on gold. We show on one hand that the global charge of the enzyme controls the loading on the interface and that the specific activity of the immobilized enzyme decreases with the enzyme coverage. On the other hand, we show that the dipole moment of the protein and the charge in the vicinity of the Cu site acting as the entry point of electrons drive the enzyme orientation. In case of weak electrostatic interactions, we demonstrate that local pH variation affects the electron transfer rate as a result of protein mobility on the surface. On the contrary, stronger electrostatic interactions destabilize the protein structure and affect the stability of the catalytic signal. These data illustrate the interplay between immobilized protein dynamics and local environment that control the efficiency of bioelectrocatalysis.</description><subject>Chemical Sciences</subject><subject>Material chemistry</subject><issn>2155-5435</issn><issn>2155-5435</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kE1PwzAMhiMEEtPYnWOuSO1ImqbpjmOfSJWQ-DhXbpJCpq5BTTfR_QX-NBkdiAu-2LLf17YehK4pGVMS0VuQTkIL1TgtCItjdoYGEeU85DHj53_qSzRybkN8xDxJBRmgz0WlZdtY10JrZDhvzF7XeCpbszdtF-DMgjL1a4DnXQ1bI12AoVb4qYXCVF6BbYkBP2plP_CiPnRbjW2Nl7vab7A1VOagVbiylcKnQ0o7XNoG3xmr-873550z7gpdlFA5PTrlIXpZLp5n6zB7WN3PplkIjCdtKLliHDjRKaNUM8YFSJHwQlBJWAIgdVkyVtCyiCM9EUSSlDOVykLROBKJYEN00-99gyp_b8wWmi63YPL1NMuPPUInk5gJsqdeS3qt9Ixco8tfAyX5kX3-wz4_sfeWoLf4Sb6xu8ZjcP_LvwAqsom7</recordid><startdate>20181207</startdate><enddate>20181207</enddate><creator>Hitaishi, Vivek Pratap</creator><creator>Mazurenko, Ievgen</creator><creator>Harb, Malek</creator><creator>Clément, Romain</creator><creator>Taris, Marion</creator><creator>Castano, Sabine</creator><creator>Duché, David</creator><creator>Lecomte, Sophie</creator><creator>Ilbert, Marianne</creator><creator>de Poulpiquet, Anne</creator><creator>Lojou, Elisabeth</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-2593-4670</orcidid><orcidid>https://orcid.org/0000-0002-9070-2334</orcidid><orcidid>https://orcid.org/0000-0001-8310-4849</orcidid><orcidid>https://orcid.org/0000-0003-2563-3130</orcidid></search><sort><creationdate>20181207</creationdate><title>Electrostatic-Driven Activity, Loading, Dynamics, and Stability of a Redox Enzyme on Functionalized-Gold Electrodes for Bioelectrocatalysis</title><author>Hitaishi, Vivek Pratap ; Mazurenko, Ievgen ; Harb, Malek ; Clément, Romain ; Taris, Marion ; Castano, Sabine ; Duché, David ; Lecomte, Sophie ; Ilbert, Marianne ; de Poulpiquet, Anne ; Lojou, Elisabeth</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a356t-c5d35a50e8311e3357ac765b71c036aaceff33b1fb42e970c0853d8cbd1427673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Chemical Sciences</topic><topic>Material chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hitaishi, Vivek Pratap</creatorcontrib><creatorcontrib>Mazurenko, Ievgen</creatorcontrib><creatorcontrib>Harb, Malek</creatorcontrib><creatorcontrib>Clément, Romain</creatorcontrib><creatorcontrib>Taris, Marion</creatorcontrib><creatorcontrib>Castano, Sabine</creatorcontrib><creatorcontrib>Duché, David</creatorcontrib><creatorcontrib>Lecomte, Sophie</creatorcontrib><creatorcontrib>Ilbert, Marianne</creatorcontrib><creatorcontrib>de Poulpiquet, Anne</creatorcontrib><creatorcontrib>Lojou, Elisabeth</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>ACS catalysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hitaishi, Vivek Pratap</au><au>Mazurenko, Ievgen</au><au>Harb, Malek</au><au>Clément, Romain</au><au>Taris, Marion</au><au>Castano, Sabine</au><au>Duché, David</au><au>Lecomte, Sophie</au><au>Ilbert, Marianne</au><au>de Poulpiquet, Anne</au><au>Lojou, Elisabeth</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrostatic-Driven Activity, Loading, Dynamics, and Stability of a Redox Enzyme on Functionalized-Gold Electrodes for Bioelectrocatalysis</atitle><jtitle>ACS catalysis</jtitle><addtitle>ACS Catal</addtitle><date>2018-12-07</date><risdate>2018</risdate><volume>8</volume><issue>12</issue><spage>12004</spage><epage>12014</epage><pages>12004-12014</pages><issn>2155-5435</issn><eissn>2155-5435</eissn><abstract>The oxygen reduction reaction is the limiting step in fuel cells, and many works are in progress to find efficient cathode catalysts. Among them, bilirubin oxidases are copper-based enzymes that reduce oxygen into water with low overpotentials. The factors that ensure electrocatalytic efficiency of the enzyme in the immobilized state are not well understood, however. In this work, we use a multiple methodological approach on a wide range of pH values for protein adsorption and electrocatalysis to demonstrate the effect of electrostatic interactions on the electrical wiring, dynamics, and stability of a bilirubin oxidase adsorbed on self-assembled-monolayers on gold. We show on one hand that the global charge of the enzyme controls the loading on the interface and that the specific activity of the immobilized enzyme decreases with the enzyme coverage. On the other hand, we show that the dipole moment of the protein and the charge in the vicinity of the Cu site acting as the entry point of electrons drive the enzyme orientation. In case of weak electrostatic interactions, we demonstrate that local pH variation affects the electron transfer rate as a result of protein mobility on the surface. On the contrary, stronger electrostatic interactions destabilize the protein structure and affect the stability of the catalytic signal. These data illustrate the interplay between immobilized protein dynamics and local environment that control the efficiency of bioelectrocatalysis.</abstract><pub>American Chemical Society</pub><doi>10.1021/acscatal.8b03443</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2593-4670</orcidid><orcidid>https://orcid.org/0000-0002-9070-2334</orcidid><orcidid>https://orcid.org/0000-0001-8310-4849</orcidid><orcidid>https://orcid.org/0000-0003-2563-3130</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2155-5435
ispartof ACS catalysis, 2018-12, Vol.8 (12), p.12004-12014
issn 2155-5435
2155-5435
language eng
recordid cdi_hal_primary_oai_HAL_hal_01994370v1
source ACS Publications
subjects Chemical Sciences
Material chemistry
title Electrostatic-Driven Activity, Loading, Dynamics, and Stability of a Redox Enzyme on Functionalized-Gold Electrodes for Bioelectrocatalysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T11%3A08%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrostatic-Driven%20Activity,%20Loading,%20Dynamics,%20and%20Stability%20of%20a%20Redox%20Enzyme%20on%20Functionalized-Gold%20Electrodes%20for%20Bioelectrocatalysis&rft.jtitle=ACS%20catalysis&rft.au=Hitaishi,%20Vivek%20Pratap&rft.date=2018-12-07&rft.volume=8&rft.issue=12&rft.spage=12004&rft.epage=12014&rft.pages=12004-12014&rft.issn=2155-5435&rft.eissn=2155-5435&rft_id=info:doi/10.1021/acscatal.8b03443&rft_dat=%3Cacs_hal_p%3Ed183904858%3C/acs_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true