A τ-Conjecture for Newton Polygons

One can associate to any bivariate polynomial P ( X , Y ) its Newton polygon. This is the convex hull of the points ( i , j ) such that the monomial X i Y j appears in P with a nonzero coefficient. We conjecture that when  P is expressed as a sum of products of sparse polynomials, the number of edge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Foundations of computational mathematics 2015-02, Vol.15 (1), p.185-197
Hauptverfasser: Koiran, Pascal, Portier, Natacha, Tavenas, Sébastien, Thomassé, Stéphan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:One can associate to any bivariate polynomial P ( X , Y ) its Newton polygon. This is the convex hull of the points ( i , j ) such that the monomial X i Y j appears in P with a nonzero coefficient. We conjecture that when  P is expressed as a sum of products of sparse polynomials, the number of edges of its Newton polygon is polynomially bounded in the size of such an expression. We show that this so-called τ -conjecture for Newton polygons, even in a weak form, implies that the permanent polynomial is not computable by polynomial-size arithmetic circuits. We make the same observation for a weak version of an earlier real τ -conjecture. Finally, we make some progress toward the τ -conjecture for Newton polygons using recent results from combinatorial geometry.
ISSN:1615-3375
1615-3383
DOI:10.1007/s10208-014-9216-x