Self-ordering on crystal surfaces: fundamentals and applications
Self-ordering on crystal surfaces has been the subject of intense efforts during the last ten years. It has been recognized as a promising way for growing uniform nanostructures with regular sizes and spacings. Continuum models have been proposed where long-range elastic repulsive interactions are r...
Gespeichert in:
Veröffentlicht in: | Materials science & engineering. B, Solid-state materials for advanced technology Solid-state materials for advanced technology, 2002-11, Vol.96 (2), p.169-177 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 177 |
---|---|
container_issue | 2 |
container_start_page | 169 |
container_title | Materials science & engineering. B, Solid-state materials for advanced technology |
container_volume | 96 |
creator | Rousset, S Repain, V Baudot, G Ellmer, H Garreau, Y Etgens, V Berroir, J.M Croset, B Sotto, M Zeppenfeld, P Ferré, J Jamet, J.P Chappert, C Lecoeur, J |
description | Self-ordering on crystal surfaces has been the subject of intense efforts during the last ten years. It has been recognized as a promising way for growing uniform nanostructures with regular sizes and spacings. Continuum models have been proposed where long-range elastic repulsive interactions are responsible for the periodic domain spontaneous formation. Vicinal surfaces unstable towards faceting lead to a one dimensional (1D) periodic morphology. Au(111) vicinals self-ordering provides a unique opportunity to point out the interplay between atomic and mesoscopic order. 2D ordering has been investigated in the complex case of atomic nitrogen adsorbed on Cu(100). Using scanning tunneling microscopy (STM) at elevated temperature, we have followed the ordered arrays of N square-shaped domains spontaneous formation. Observations are discussed in the light of previous continuum models for self-ordering. The question of understanding self-ordering is not only of fundamental but also of technological interest since it is a fruitful way of growing regularly spaced nanostructures in the 1–100 nm range. This will be illustrated by two examples: (i) self-ordered substrates can serve as templates for growing 2D square lattice of regular nanostructures; (ii) magnetic domains of an ultra-thin film can be tailored by using self-ordered substrates. |
doi_str_mv | 10.1016/S0921-5107(02)00313-6 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01987600v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0921510702003136</els_id><sourcerecordid>oai_HAL_hal_01987600v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-76935bf5acbfe419f8c346c25dce5c51920ada835672ef644ef48f51cc64933a3</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdRsFZ_gpCLYA_R2c8kXrQUtULBQ_W8bCe7upImZTct9N-bNKJHTwMvzzPDvIRcUrihQNXtEgpGU0khuwY2AeCUp-qIjGie8VQUQhyT0S9ySs5i_AIAyhgbkYelrVzahNIGX38kTZ1g2MfWVEncBmfQxrvEbevSrG3dpTExdZmYzabyaFrf1PGcnLgutxc_c0zenx7fZvN08fr8MpsuUhSQt2mmCi5XThpcOSto4XLkQiGTJVqJkhYMTGlyLlXGrFNCWCdyJymiEgXnho_JZNj7aSq9CX5twl43xuv5dKH7DGiRZwpgRztWDiyGJsZg3a9AQfeV6UNluu9DA9OHyrTqvKvB25iIpnLB1OjjnywE4_0jY3I_cLZ7eOdt0BG9rdGWPlhsddn4fy59A1Vmf1k</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Self-ordering on crystal surfaces: fundamentals and applications</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Rousset, S ; Repain, V ; Baudot, G ; Ellmer, H ; Garreau, Y ; Etgens, V ; Berroir, J.M ; Croset, B ; Sotto, M ; Zeppenfeld, P ; Ferré, J ; Jamet, J.P ; Chappert, C ; Lecoeur, J</creator><creatorcontrib>Rousset, S ; Repain, V ; Baudot, G ; Ellmer, H ; Garreau, Y ; Etgens, V ; Berroir, J.M ; Croset, B ; Sotto, M ; Zeppenfeld, P ; Ferré, J ; Jamet, J.P ; Chappert, C ; Lecoeur, J</creatorcontrib><description>Self-ordering on crystal surfaces has been the subject of intense efforts during the last ten years. It has been recognized as a promising way for growing uniform nanostructures with regular sizes and spacings. Continuum models have been proposed where long-range elastic repulsive interactions are responsible for the periodic domain spontaneous formation. Vicinal surfaces unstable towards faceting lead to a one dimensional (1D) periodic morphology. Au(111) vicinals self-ordering provides a unique opportunity to point out the interplay between atomic and mesoscopic order. 2D ordering has been investigated in the complex case of atomic nitrogen adsorbed on Cu(100). Using scanning tunneling microscopy (STM) at elevated temperature, we have followed the ordered arrays of N square-shaped domains spontaneous formation. Observations are discussed in the light of previous continuum models for self-ordering. The question of understanding self-ordering is not only of fundamental but also of technological interest since it is a fruitful way of growing regularly spaced nanostructures in the 1–100 nm range. This will be illustrated by two examples: (i) self-ordered substrates can serve as templates for growing 2D square lattice of regular nanostructures; (ii) magnetic domains of an ultra-thin film can be tailored by using self-ordered substrates.</description><identifier>ISSN: 0921-5107</identifier><identifier>EISSN: 1873-4944</identifier><identifier>DOI: 10.1016/S0921-5107(02)00313-6</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Magnetic domains ; Materials science ; Nanoscale materials and structures: fabrication and characterization ; Nanostructures ; Physics ; Scanning tunneling mocroscopy ; Self-ordering ; Vicinal surfaces</subject><ispartof>Materials science & engineering. B, Solid-state materials for advanced technology, 2002-11, Vol.96 (2), p.169-177</ispartof><rights>2002 Elsevier Science B.V.</rights><rights>2003 INIST-CNRS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-76935bf5acbfe419f8c346c25dce5c51920ada835672ef644ef48f51cc64933a3</citedby><cites>FETCH-LOGICAL-c408t-76935bf5acbfe419f8c346c25dce5c51920ada835672ef644ef48f51cc64933a3</cites><orcidid>0000-0001-9827-4402</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/S0921-5107(02)00313-6$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,309,310,314,780,784,789,790,885,3550,23930,23931,25140,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=14423769$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01987600$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Rousset, S</creatorcontrib><creatorcontrib>Repain, V</creatorcontrib><creatorcontrib>Baudot, G</creatorcontrib><creatorcontrib>Ellmer, H</creatorcontrib><creatorcontrib>Garreau, Y</creatorcontrib><creatorcontrib>Etgens, V</creatorcontrib><creatorcontrib>Berroir, J.M</creatorcontrib><creatorcontrib>Croset, B</creatorcontrib><creatorcontrib>Sotto, M</creatorcontrib><creatorcontrib>Zeppenfeld, P</creatorcontrib><creatorcontrib>Ferré, J</creatorcontrib><creatorcontrib>Jamet, J.P</creatorcontrib><creatorcontrib>Chappert, C</creatorcontrib><creatorcontrib>Lecoeur, J</creatorcontrib><title>Self-ordering on crystal surfaces: fundamentals and applications</title><title>Materials science & engineering. B, Solid-state materials for advanced technology</title><description>Self-ordering on crystal surfaces has been the subject of intense efforts during the last ten years. It has been recognized as a promising way for growing uniform nanostructures with regular sizes and spacings. Continuum models have been proposed where long-range elastic repulsive interactions are responsible for the periodic domain spontaneous formation. Vicinal surfaces unstable towards faceting lead to a one dimensional (1D) periodic morphology. Au(111) vicinals self-ordering provides a unique opportunity to point out the interplay between atomic and mesoscopic order. 2D ordering has been investigated in the complex case of atomic nitrogen adsorbed on Cu(100). Using scanning tunneling microscopy (STM) at elevated temperature, we have followed the ordered arrays of N square-shaped domains spontaneous formation. Observations are discussed in the light of previous continuum models for self-ordering. The question of understanding self-ordering is not only of fundamental but also of technological interest since it is a fruitful way of growing regularly spaced nanostructures in the 1–100 nm range. This will be illustrated by two examples: (i) self-ordered substrates can serve as templates for growing 2D square lattice of regular nanostructures; (ii) magnetic domains of an ultra-thin film can be tailored by using self-ordered substrates.</description><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Magnetic domains</subject><subject>Materials science</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanostructures</subject><subject>Physics</subject><subject>Scanning tunneling mocroscopy</subject><subject>Self-ordering</subject><subject>Vicinal surfaces</subject><issn>0921-5107</issn><issn>1873-4944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2002</creationdate><recordtype>article</recordtype><recordid>eNqFkE1Lw0AQhhdRsFZ_gpCLYA_R2c8kXrQUtULBQ_W8bCe7upImZTct9N-bNKJHTwMvzzPDvIRcUrihQNXtEgpGU0khuwY2AeCUp-qIjGie8VQUQhyT0S9ySs5i_AIAyhgbkYelrVzahNIGX38kTZ1g2MfWVEncBmfQxrvEbevSrG3dpTExdZmYzabyaFrf1PGcnLgutxc_c0zenx7fZvN08fr8MpsuUhSQt2mmCi5XThpcOSto4XLkQiGTJVqJkhYMTGlyLlXGrFNCWCdyJymiEgXnho_JZNj7aSq9CX5twl43xuv5dKH7DGiRZwpgRztWDiyGJsZg3a9AQfeV6UNluu9DA9OHyrTqvKvB25iIpnLB1OjjnywE4_0jY3I_cLZ7eOdt0BG9rdGWPlhsddn4fy59A1Vmf1k</recordid><startdate>20021101</startdate><enddate>20021101</enddate><creator>Rousset, S</creator><creator>Repain, V</creator><creator>Baudot, G</creator><creator>Ellmer, H</creator><creator>Garreau, Y</creator><creator>Etgens, V</creator><creator>Berroir, J.M</creator><creator>Croset, B</creator><creator>Sotto, M</creator><creator>Zeppenfeld, P</creator><creator>Ferré, J</creator><creator>Jamet, J.P</creator><creator>Chappert, C</creator><creator>Lecoeur, J</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0001-9827-4402</orcidid></search><sort><creationdate>20021101</creationdate><title>Self-ordering on crystal surfaces: fundamentals and applications</title><author>Rousset, S ; Repain, V ; Baudot, G ; Ellmer, H ; Garreau, Y ; Etgens, V ; Berroir, J.M ; Croset, B ; Sotto, M ; Zeppenfeld, P ; Ferré, J ; Jamet, J.P ; Chappert, C ; Lecoeur, J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-76935bf5acbfe419f8c346c25dce5c51920ada835672ef644ef48f51cc64933a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2002</creationdate><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Magnetic domains</topic><topic>Materials science</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanostructures</topic><topic>Physics</topic><topic>Scanning tunneling mocroscopy</topic><topic>Self-ordering</topic><topic>Vicinal surfaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rousset, S</creatorcontrib><creatorcontrib>Repain, V</creatorcontrib><creatorcontrib>Baudot, G</creatorcontrib><creatorcontrib>Ellmer, H</creatorcontrib><creatorcontrib>Garreau, Y</creatorcontrib><creatorcontrib>Etgens, V</creatorcontrib><creatorcontrib>Berroir, J.M</creatorcontrib><creatorcontrib>Croset, B</creatorcontrib><creatorcontrib>Sotto, M</creatorcontrib><creatorcontrib>Zeppenfeld, P</creatorcontrib><creatorcontrib>Ferré, J</creatorcontrib><creatorcontrib>Jamet, J.P</creatorcontrib><creatorcontrib>Chappert, C</creatorcontrib><creatorcontrib>Lecoeur, J</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Materials science & engineering. B, Solid-state materials for advanced technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rousset, S</au><au>Repain, V</au><au>Baudot, G</au><au>Ellmer, H</au><au>Garreau, Y</au><au>Etgens, V</au><au>Berroir, J.M</au><au>Croset, B</au><au>Sotto, M</au><au>Zeppenfeld, P</au><au>Ferré, J</au><au>Jamet, J.P</au><au>Chappert, C</au><au>Lecoeur, J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-ordering on crystal surfaces: fundamentals and applications</atitle><jtitle>Materials science & engineering. B, Solid-state materials for advanced technology</jtitle><date>2002-11-01</date><risdate>2002</risdate><volume>96</volume><issue>2</issue><spage>169</spage><epage>177</epage><pages>169-177</pages><issn>0921-5107</issn><eissn>1873-4944</eissn><abstract>Self-ordering on crystal surfaces has been the subject of intense efforts during the last ten years. It has been recognized as a promising way for growing uniform nanostructures with regular sizes and spacings. Continuum models have been proposed where long-range elastic repulsive interactions are responsible for the periodic domain spontaneous formation. Vicinal surfaces unstable towards faceting lead to a one dimensional (1D) periodic morphology. Au(111) vicinals self-ordering provides a unique opportunity to point out the interplay between atomic and mesoscopic order. 2D ordering has been investigated in the complex case of atomic nitrogen adsorbed on Cu(100). Using scanning tunneling microscopy (STM) at elevated temperature, we have followed the ordered arrays of N square-shaped domains spontaneous formation. Observations are discussed in the light of previous continuum models for self-ordering. The question of understanding self-ordering is not only of fundamental but also of technological interest since it is a fruitful way of growing regularly spaced nanostructures in the 1–100 nm range. This will be illustrated by two examples: (i) self-ordered substrates can serve as templates for growing 2D square lattice of regular nanostructures; (ii) magnetic domains of an ultra-thin film can be tailored by using self-ordered substrates.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/S0921-5107(02)00313-6</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9827-4402</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0921-5107 |
ispartof | Materials science & engineering. B, Solid-state materials for advanced technology, 2002-11, Vol.96 (2), p.169-177 |
issn | 0921-5107 1873-4944 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01987600v1 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Cross-disciplinary physics: materials science rheology Exact sciences and technology Magnetic domains Materials science Nanoscale materials and structures: fabrication and characterization Nanostructures Physics Scanning tunneling mocroscopy Self-ordering Vicinal surfaces |
title | Self-ordering on crystal surfaces: fundamentals and applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T04%3A37%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-ordering%20on%20crystal%20surfaces:%20fundamentals%20and%20applications&rft.jtitle=Materials%20science%20&%20engineering.%20B,%20Solid-state%20materials%20for%20advanced%20technology&rft.au=Rousset,%20S&rft.date=2002-11-01&rft.volume=96&rft.issue=2&rft.spage=169&rft.epage=177&rft.pages=169-177&rft.issn=0921-5107&rft.eissn=1873-4944&rft_id=info:doi/10.1016/S0921-5107(02)00313-6&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01987600v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0921510702003136&rfr_iscdi=true |