A thermodynamic closure for the simulation of multiphase reactive flows
A simple thermodynamic closure for the simulation of multiphase reactive flows is presented. It combines a fully explicit thermodynamic closure appropriate for weakly thermal multiphase flow simulations, with the classical variable heat capacity ideal gas thermodynamic closure, commonly used for rea...
Gespeichert in:
Veröffentlicht in: | International journal of thermal sciences 2019-03, Vol.137, p.640-649 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 649 |
---|---|
container_issue | |
container_start_page | 640 |
container_title | International journal of thermal sciences |
container_volume | 137 |
creator | Boivin, P. Cannac, M.A. Le Métayer, O. |
description | A simple thermodynamic closure for the simulation of multiphase reactive flows is presented. It combines a fully explicit thermodynamic closure appropriate for weakly thermal multiphase flow simulations, with the classical variable heat capacity ideal gas thermodynamic closure, commonly used for reactive flows simulations. Each liquid and gas component is assumed to follow the recent Noble-Abel Stiffened Gas equation of state, fully described by a set of five parameters. A new method for setting these parameters is presented and validated through comparisons with NIST references. Comparisons with a well-known cubic equation of state, Soave-Redlich-Kwong, are also included. The Noble-Abel Stiffened-Gas equation of state is then extended as to cope with variable heat capacity, to make the mixture thermodynamic closure appropriate for multiphase reactive flows. |
doi_str_mv | 10.1016/j.ijthermalsci.2018.10.034 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01981954v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1290072918301327</els_id><sourcerecordid>oai_HAL_hal_01981954v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-470bfc8d6d037a5e16e2dc76911b07d733413ff163ed0acf7df4c7478294b3cd3</originalsourceid><addsrcrecordid>eNqNUE1LAzEQDaJgrf6H4M3DrpNNutl4K1WrUPCi55Dmg2bZbUqyrfTfm7UiHj3NY94HMw-hWwIlAVLft6Vvh42NveqS9mUFpMlECZSdoQnhvCkYqevzjCsBBfBKXKKrlFoA4ALEBC3n-NsfzHGreq-x7kLaR4tdiCODk-_3nRp82OLgcMaD321UsjhapQd_yMoufKZrdOHyDfbmZ07Rx_PT--KlWL0tXxfzVaEZ40PBOKydbkxtgHI1s6S2ldG8FoSsgRtOKSPUOVJTa0Bpx41jmjPeVIKtqTZ0iu5OuRvVyV30vYpHGZSXL_OVHHdAREPEjB1I1j6ctDqGlKJ1vwYCcqxPtvJvfXKsb-Ryfdn8eDLb_M3B2yizwm61NT5aPUgT_H9ivgDzBICP</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A thermodynamic closure for the simulation of multiphase reactive flows</title><source>Elsevier ScienceDirect Journals</source><creator>Boivin, P. ; Cannac, M.A. ; Le Métayer, O.</creator><creatorcontrib>Boivin, P. ; Cannac, M.A. ; Le Métayer, O.</creatorcontrib><description>A simple thermodynamic closure for the simulation of multiphase reactive flows is presented. It combines a fully explicit thermodynamic closure appropriate for weakly thermal multiphase flow simulations, with the classical variable heat capacity ideal gas thermodynamic closure, commonly used for reactive flows simulations. Each liquid and gas component is assumed to follow the recent Noble-Abel Stiffened Gas equation of state, fully described by a set of five parameters. A new method for setting these parameters is presented and validated through comparisons with NIST references. Comparisons with a well-known cubic equation of state, Soave-Redlich-Kwong, are also included. The Noble-Abel Stiffened-Gas equation of state is then extended as to cope with variable heat capacity, to make the mixture thermodynamic closure appropriate for multiphase reactive flows.</description><identifier>ISSN: 1290-0729</identifier><identifier>EISSN: 1778-4166</identifier><identifier>DOI: 10.1016/j.ijthermalsci.2018.10.034</identifier><language>eng</language><publisher>Elsevier Masson SAS</publisher><subject>Computational fluid dynamics ; Engineering Sciences ; Equation of state ; Multiphase flows ; Reactive flows ; Reactive fluid environment ; Thermodynamics</subject><ispartof>International journal of thermal sciences, 2019-03, Vol.137, p.640-649</ispartof><rights>2018 Elsevier Masson SAS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-470bfc8d6d037a5e16e2dc76911b07d733413ff163ed0acf7df4c7478294b3cd3</citedby><cites>FETCH-LOGICAL-c447t-470bfc8d6d037a5e16e2dc76911b07d733413ff163ed0acf7df4c7478294b3cd3</cites><orcidid>0000-0003-3440-6992</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1290072918301327$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01981954$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Boivin, P.</creatorcontrib><creatorcontrib>Cannac, M.A.</creatorcontrib><creatorcontrib>Le Métayer, O.</creatorcontrib><title>A thermodynamic closure for the simulation of multiphase reactive flows</title><title>International journal of thermal sciences</title><description>A simple thermodynamic closure for the simulation of multiphase reactive flows is presented. It combines a fully explicit thermodynamic closure appropriate for weakly thermal multiphase flow simulations, with the classical variable heat capacity ideal gas thermodynamic closure, commonly used for reactive flows simulations. Each liquid and gas component is assumed to follow the recent Noble-Abel Stiffened Gas equation of state, fully described by a set of five parameters. A new method for setting these parameters is presented and validated through comparisons with NIST references. Comparisons with a well-known cubic equation of state, Soave-Redlich-Kwong, are also included. The Noble-Abel Stiffened-Gas equation of state is then extended as to cope with variable heat capacity, to make the mixture thermodynamic closure appropriate for multiphase reactive flows.</description><subject>Computational fluid dynamics</subject><subject>Engineering Sciences</subject><subject>Equation of state</subject><subject>Multiphase flows</subject><subject>Reactive flows</subject><subject>Reactive fluid environment</subject><subject>Thermodynamics</subject><issn>1290-0729</issn><issn>1778-4166</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNUE1LAzEQDaJgrf6H4M3DrpNNutl4K1WrUPCi55Dmg2bZbUqyrfTfm7UiHj3NY94HMw-hWwIlAVLft6Vvh42NveqS9mUFpMlECZSdoQnhvCkYqevzjCsBBfBKXKKrlFoA4ALEBC3n-NsfzHGreq-x7kLaR4tdiCODk-_3nRp82OLgcMaD321UsjhapQd_yMoufKZrdOHyDfbmZ07Rx_PT--KlWL0tXxfzVaEZ40PBOKydbkxtgHI1s6S2ldG8FoSsgRtOKSPUOVJTa0Bpx41jmjPeVIKtqTZ0iu5OuRvVyV30vYpHGZSXL_OVHHdAREPEjB1I1j6ctDqGlKJ1vwYCcqxPtvJvfXKsb-Ryfdn8eDLb_M3B2yizwm61NT5aPUgT_H9ivgDzBICP</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Boivin, P.</creator><creator>Cannac, M.A.</creator><creator>Le Métayer, O.</creator><general>Elsevier Masson SAS</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-3440-6992</orcidid></search><sort><creationdate>20190301</creationdate><title>A thermodynamic closure for the simulation of multiphase reactive flows</title><author>Boivin, P. ; Cannac, M.A. ; Le Métayer, O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-470bfc8d6d037a5e16e2dc76911b07d733413ff163ed0acf7df4c7478294b3cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computational fluid dynamics</topic><topic>Engineering Sciences</topic><topic>Equation of state</topic><topic>Multiphase flows</topic><topic>Reactive flows</topic><topic>Reactive fluid environment</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boivin, P.</creatorcontrib><creatorcontrib>Cannac, M.A.</creatorcontrib><creatorcontrib>Le Métayer, O.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>International journal of thermal sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boivin, P.</au><au>Cannac, M.A.</au><au>Le Métayer, O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A thermodynamic closure for the simulation of multiphase reactive flows</atitle><jtitle>International journal of thermal sciences</jtitle><date>2019-03-01</date><risdate>2019</risdate><volume>137</volume><spage>640</spage><epage>649</epage><pages>640-649</pages><issn>1290-0729</issn><eissn>1778-4166</eissn><abstract>A simple thermodynamic closure for the simulation of multiphase reactive flows is presented. It combines a fully explicit thermodynamic closure appropriate for weakly thermal multiphase flow simulations, with the classical variable heat capacity ideal gas thermodynamic closure, commonly used for reactive flows simulations. Each liquid and gas component is assumed to follow the recent Noble-Abel Stiffened Gas equation of state, fully described by a set of five parameters. A new method for setting these parameters is presented and validated through comparisons with NIST references. Comparisons with a well-known cubic equation of state, Soave-Redlich-Kwong, are also included. The Noble-Abel Stiffened-Gas equation of state is then extended as to cope with variable heat capacity, to make the mixture thermodynamic closure appropriate for multiphase reactive flows.</abstract><pub>Elsevier Masson SAS</pub><doi>10.1016/j.ijthermalsci.2018.10.034</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3440-6992</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1290-0729 |
ispartof | International journal of thermal sciences, 2019-03, Vol.137, p.640-649 |
issn | 1290-0729 1778-4166 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01981954v1 |
source | Elsevier ScienceDirect Journals |
subjects | Computational fluid dynamics Engineering Sciences Equation of state Multiphase flows Reactive flows Reactive fluid environment Thermodynamics |
title | A thermodynamic closure for the simulation of multiphase reactive flows |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A49%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20thermodynamic%20closure%20for%20the%20simulation%20of%20multiphase%20reactive%20flows&rft.jtitle=International%20journal%20of%20thermal%20sciences&rft.au=Boivin,%20P.&rft.date=2019-03-01&rft.volume=137&rft.spage=640&rft.epage=649&rft.pages=640-649&rft.issn=1290-0729&rft.eissn=1778-4166&rft_id=info:doi/10.1016/j.ijthermalsci.2018.10.034&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01981954v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S1290072918301327&rfr_iscdi=true |