A thermodynamic closure for the simulation of multiphase reactive flows

A simple thermodynamic closure for the simulation of multiphase reactive flows is presented. It combines a fully explicit thermodynamic closure appropriate for weakly thermal multiphase flow simulations, with the classical variable heat capacity ideal gas thermodynamic closure, commonly used for rea...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of thermal sciences 2019-03, Vol.137, p.640-649
Hauptverfasser: Boivin, P., Cannac, M.A., Le Métayer, O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 649
container_issue
container_start_page 640
container_title International journal of thermal sciences
container_volume 137
creator Boivin, P.
Cannac, M.A.
Le Métayer, O.
description A simple thermodynamic closure for the simulation of multiphase reactive flows is presented. It combines a fully explicit thermodynamic closure appropriate for weakly thermal multiphase flow simulations, with the classical variable heat capacity ideal gas thermodynamic closure, commonly used for reactive flows simulations. Each liquid and gas component is assumed to follow the recent Noble-Abel Stiffened Gas equation of state, fully described by a set of five parameters. A new method for setting these parameters is presented and validated through comparisons with NIST references. Comparisons with a well-known cubic equation of state, Soave-Redlich-Kwong, are also included. The Noble-Abel Stiffened-Gas equation of state is then extended as to cope with variable heat capacity, to make the mixture thermodynamic closure appropriate for multiphase reactive flows.
doi_str_mv 10.1016/j.ijthermalsci.2018.10.034
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01981954v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1290072918301327</els_id><sourcerecordid>oai_HAL_hal_01981954v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-470bfc8d6d037a5e16e2dc76911b07d733413ff163ed0acf7df4c7478294b3cd3</originalsourceid><addsrcrecordid>eNqNUE1LAzEQDaJgrf6H4M3DrpNNutl4K1WrUPCi55Dmg2bZbUqyrfTfm7UiHj3NY94HMw-hWwIlAVLft6Vvh42NveqS9mUFpMlECZSdoQnhvCkYqevzjCsBBfBKXKKrlFoA4ALEBC3n-NsfzHGreq-x7kLaR4tdiCODk-_3nRp82OLgcMaD321UsjhapQd_yMoufKZrdOHyDfbmZ07Rx_PT--KlWL0tXxfzVaEZ40PBOKydbkxtgHI1s6S2ldG8FoSsgRtOKSPUOVJTa0Bpx41jmjPeVIKtqTZ0iu5OuRvVyV30vYpHGZSXL_OVHHdAREPEjB1I1j6ctDqGlKJ1vwYCcqxPtvJvfXKsb-Ryfdn8eDLb_M3B2yizwm61NT5aPUgT_H9ivgDzBICP</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A thermodynamic closure for the simulation of multiphase reactive flows</title><source>Elsevier ScienceDirect Journals</source><creator>Boivin, P. ; Cannac, M.A. ; Le Métayer, O.</creator><creatorcontrib>Boivin, P. ; Cannac, M.A. ; Le Métayer, O.</creatorcontrib><description>A simple thermodynamic closure for the simulation of multiphase reactive flows is presented. It combines a fully explicit thermodynamic closure appropriate for weakly thermal multiphase flow simulations, with the classical variable heat capacity ideal gas thermodynamic closure, commonly used for reactive flows simulations. Each liquid and gas component is assumed to follow the recent Noble-Abel Stiffened Gas equation of state, fully described by a set of five parameters. A new method for setting these parameters is presented and validated through comparisons with NIST references. Comparisons with a well-known cubic equation of state, Soave-Redlich-Kwong, are also included. The Noble-Abel Stiffened-Gas equation of state is then extended as to cope with variable heat capacity, to make the mixture thermodynamic closure appropriate for multiphase reactive flows.</description><identifier>ISSN: 1290-0729</identifier><identifier>EISSN: 1778-4166</identifier><identifier>DOI: 10.1016/j.ijthermalsci.2018.10.034</identifier><language>eng</language><publisher>Elsevier Masson SAS</publisher><subject>Computational fluid dynamics ; Engineering Sciences ; Equation of state ; Multiphase flows ; Reactive flows ; Reactive fluid environment ; Thermodynamics</subject><ispartof>International journal of thermal sciences, 2019-03, Vol.137, p.640-649</ispartof><rights>2018 Elsevier Masson SAS</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-470bfc8d6d037a5e16e2dc76911b07d733413ff163ed0acf7df4c7478294b3cd3</citedby><cites>FETCH-LOGICAL-c447t-470bfc8d6d037a5e16e2dc76911b07d733413ff163ed0acf7df4c7478294b3cd3</cites><orcidid>0000-0003-3440-6992</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1290072918301327$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01981954$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Boivin, P.</creatorcontrib><creatorcontrib>Cannac, M.A.</creatorcontrib><creatorcontrib>Le Métayer, O.</creatorcontrib><title>A thermodynamic closure for the simulation of multiphase reactive flows</title><title>International journal of thermal sciences</title><description>A simple thermodynamic closure for the simulation of multiphase reactive flows is presented. It combines a fully explicit thermodynamic closure appropriate for weakly thermal multiphase flow simulations, with the classical variable heat capacity ideal gas thermodynamic closure, commonly used for reactive flows simulations. Each liquid and gas component is assumed to follow the recent Noble-Abel Stiffened Gas equation of state, fully described by a set of five parameters. A new method for setting these parameters is presented and validated through comparisons with NIST references. Comparisons with a well-known cubic equation of state, Soave-Redlich-Kwong, are also included. The Noble-Abel Stiffened-Gas equation of state is then extended as to cope with variable heat capacity, to make the mixture thermodynamic closure appropriate for multiphase reactive flows.</description><subject>Computational fluid dynamics</subject><subject>Engineering Sciences</subject><subject>Equation of state</subject><subject>Multiphase flows</subject><subject>Reactive flows</subject><subject>Reactive fluid environment</subject><subject>Thermodynamics</subject><issn>1290-0729</issn><issn>1778-4166</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNqNUE1LAzEQDaJgrf6H4M3DrpNNutl4K1WrUPCi55Dmg2bZbUqyrfTfm7UiHj3NY94HMw-hWwIlAVLft6Vvh42NveqS9mUFpMlECZSdoQnhvCkYqevzjCsBBfBKXKKrlFoA4ALEBC3n-NsfzHGreq-x7kLaR4tdiCODk-_3nRp82OLgcMaD321UsjhapQd_yMoufKZrdOHyDfbmZ07Rx_PT--KlWL0tXxfzVaEZ40PBOKydbkxtgHI1s6S2ldG8FoSsgRtOKSPUOVJTa0Bpx41jmjPeVIKtqTZ0iu5OuRvVyV30vYpHGZSXL_OVHHdAREPEjB1I1j6ctDqGlKJ1vwYCcqxPtvJvfXKsb-Ryfdn8eDLb_M3B2yizwm61NT5aPUgT_H9ivgDzBICP</recordid><startdate>20190301</startdate><enddate>20190301</enddate><creator>Boivin, P.</creator><creator>Cannac, M.A.</creator><creator>Le Métayer, O.</creator><general>Elsevier Masson SAS</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-3440-6992</orcidid></search><sort><creationdate>20190301</creationdate><title>A thermodynamic closure for the simulation of multiphase reactive flows</title><author>Boivin, P. ; Cannac, M.A. ; Le Métayer, O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-470bfc8d6d037a5e16e2dc76911b07d733413ff163ed0acf7df4c7478294b3cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Computational fluid dynamics</topic><topic>Engineering Sciences</topic><topic>Equation of state</topic><topic>Multiphase flows</topic><topic>Reactive flows</topic><topic>Reactive fluid environment</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boivin, P.</creatorcontrib><creatorcontrib>Cannac, M.A.</creatorcontrib><creatorcontrib>Le Métayer, O.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>International journal of thermal sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boivin, P.</au><au>Cannac, M.A.</au><au>Le Métayer, O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A thermodynamic closure for the simulation of multiphase reactive flows</atitle><jtitle>International journal of thermal sciences</jtitle><date>2019-03-01</date><risdate>2019</risdate><volume>137</volume><spage>640</spage><epage>649</epage><pages>640-649</pages><issn>1290-0729</issn><eissn>1778-4166</eissn><abstract>A simple thermodynamic closure for the simulation of multiphase reactive flows is presented. It combines a fully explicit thermodynamic closure appropriate for weakly thermal multiphase flow simulations, with the classical variable heat capacity ideal gas thermodynamic closure, commonly used for reactive flows simulations. Each liquid and gas component is assumed to follow the recent Noble-Abel Stiffened Gas equation of state, fully described by a set of five parameters. A new method for setting these parameters is presented and validated through comparisons with NIST references. Comparisons with a well-known cubic equation of state, Soave-Redlich-Kwong, are also included. The Noble-Abel Stiffened-Gas equation of state is then extended as to cope with variable heat capacity, to make the mixture thermodynamic closure appropriate for multiphase reactive flows.</abstract><pub>Elsevier Masson SAS</pub><doi>10.1016/j.ijthermalsci.2018.10.034</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3440-6992</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1290-0729
ispartof International journal of thermal sciences, 2019-03, Vol.137, p.640-649
issn 1290-0729
1778-4166
language eng
recordid cdi_hal_primary_oai_HAL_hal_01981954v1
source Elsevier ScienceDirect Journals
subjects Computational fluid dynamics
Engineering Sciences
Equation of state
Multiphase flows
Reactive flows
Reactive fluid environment
Thermodynamics
title A thermodynamic closure for the simulation of multiphase reactive flows
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A49%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20thermodynamic%20closure%20for%20the%20simulation%20of%20multiphase%20reactive%20flows&rft.jtitle=International%20journal%20of%20thermal%20sciences&rft.au=Boivin,%20P.&rft.date=2019-03-01&rft.volume=137&rft.spage=640&rft.epage=649&rft.pages=640-649&rft.issn=1290-0729&rft.eissn=1778-4166&rft_id=info:doi/10.1016/j.ijthermalsci.2018.10.034&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01981954v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S1290072918301327&rfr_iscdi=true