Charge transport through redox active [H 7 P 8 W 48 O 184 ] 33- polyoxometalates self-assembled onto gold surfaces and gold nanodots
Polyoxometalates (POMs) are redox-active molecular oxides, which attract growing interest for their integration into nano-devices, such as high-density data storage non-volatile memories. In this work, we investigated the electrostatic deposition of the negatively charged [H7P8W48O184]33- POM onto p...
Gespeichert in:
Veröffentlicht in: | Nanoscale 2019-01, Vol.11 (4), p.1863-1878 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1878 |
---|---|
container_issue | 4 |
container_start_page | 1863 |
container_title | Nanoscale |
container_volume | 11 |
creator | Dalla Francesca, K Lenfant, S Laurans, M Volatron, F Izzet, G Humblot, V Methivier, C Guerin, D Proust, A Vuillaume, D |
description | Polyoxometalates (POMs) are redox-active molecular oxides, which attract growing interest for their integration into nano-devices, such as high-density data storage non-volatile memories. In this work, we investigated the electrostatic deposition of the negatively charged [H7P8W48O184]33- POM onto positively charged 8-amino-1-octanethiol self-assembled monolayers (SAMs) preformed onto gold substrates or onto an array of gold nanodots. The ring-shaped [H7P8W48O184]33- POM was selected as an example of large POMs with high charge storage capacity. To avoid the formation of POM aggregates onto the substrates, which would introduce variability in the local electrical properties, special attention has to be paid to the preformed SAM seeding layer, which should itself be deprived of aggregates. Where necessary, rinsing steps were found to be crucial to eliminate these aggregates and to provide uniformly covered substrates for subsequent POM deposition and electrical characterizations. This especially holds for commercially available gold/glass substrates while these rinsing steps were not essential in the case of template stripped gold of very low roughness. Charge transport through the related molecular junctions and nanodot molecule junctions (NMJs) has been probed by conducting-AFM. We analyzed the current-voltage curves with different models: electron tunneling though the SAMs (Simmons model), transition voltage spectroscopy (TVS) method or molecular single energy level mediated transport (Landauer equation) and we discussed the energetics of the molecular junctions. We concluded to an energy level alignment of the alkyl spacer and POM lowest occupied molecular orbitals (LUMOs), probably due to dipolar effects. |
doi_str_mv | 10.1039/C8NR09377F |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01981014v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2179341609</sourcerecordid><originalsourceid>FETCH-LOGICAL-c230f-1d950615be10a1252c576b1d79d3420a6eeb2470d2bf81e34dc01a43bdfc5dbf3</originalsourceid><addsrcrecordid>eNpd0d-L1DAQB_AgineuvvgHyIAvKlQnP5q0j8fiucLiiSg-iJS0me7ukTZrkh537_7hdtlzBZ8yDB-GyXwZe87xLUdZv1tWn75gLY25fMDOBSospDTi4anW6ow9SekaUddSy8fsTKKWRgl9zn4vtzZuCHK0Y9qHmCFvY5g2W4jkwi3YLu9uCH6swMBnqOA7qAqugFcKfoKUBeyDvwu3YaBsvc2UIJHvC5sSDa0nB2HMATbBO0hT7G03Czu6Y2e0Y3Ahp6fsUW99omf374J9u3z_dbkq1lcfPi4v1kUnJPYFd3WJmpctcbRclKIrjW65M7WTSqDVRK1QBp1o-4qTVK5DbpVsXd-Vru3lgr0-zt1a3-zjbrDxrgl216wu1s2hh7yuOHJ1w2f76mj3MfyaKOVm2KWOvLcjhSk1gptaKq7nwy_Yy__odZjiOP_koFByU1Y4qzdH1cWQUqT-tAHH5pBj8y_HGb-4Hzm1A7kT_Ruc_AMJF5TE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2170317580</pqid></control><display><type>article</type><title>Charge transport through redox active [H 7 P 8 W 48 O 184 ] 33- polyoxometalates self-assembled onto gold surfaces and gold nanodots</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Dalla Francesca, K ; Lenfant, S ; Laurans, M ; Volatron, F ; Izzet, G ; Humblot, V ; Methivier, C ; Guerin, D ; Proust, A ; Vuillaume, D</creator><creatorcontrib>Dalla Francesca, K ; Lenfant, S ; Laurans, M ; Volatron, F ; Izzet, G ; Humblot, V ; Methivier, C ; Guerin, D ; Proust, A ; Vuillaume, D</creatorcontrib><description>Polyoxometalates (POMs) are redox-active molecular oxides, which attract growing interest for their integration into nano-devices, such as high-density data storage non-volatile memories. In this work, we investigated the electrostatic deposition of the negatively charged [H7P8W48O184]33- POM onto positively charged 8-amino-1-octanethiol self-assembled monolayers (SAMs) preformed onto gold substrates or onto an array of gold nanodots. The ring-shaped [H7P8W48O184]33- POM was selected as an example of large POMs with high charge storage capacity. To avoid the formation of POM aggregates onto the substrates, which would introduce variability in the local electrical properties, special attention has to be paid to the preformed SAM seeding layer, which should itself be deprived of aggregates. Where necessary, rinsing steps were found to be crucial to eliminate these aggregates and to provide uniformly covered substrates for subsequent POM deposition and electrical characterizations. This especially holds for commercially available gold/glass substrates while these rinsing steps were not essential in the case of template stripped gold of very low roughness. Charge transport through the related molecular junctions and nanodot molecule junctions (NMJs) has been probed by conducting-AFM. We analyzed the current-voltage curves with different models: electron tunneling though the SAMs (Simmons model), transition voltage spectroscopy (TVS) method or molecular single energy level mediated transport (Landauer equation) and we discussed the energetics of the molecular junctions. We concluded to an energy level alignment of the alkyl spacer and POM lowest occupied molecular orbitals (LUMOs), probably due to dipolar effects.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/C8NR09377F</identifier><identifier>PMID: 30637426</identifier><language>eng</language><publisher>England: Royal Society of Chemistry</publisher><subject>Aggregates ; Charge transport ; Chemical Sciences ; Condensed Matter ; Data storage ; Deposition ; Electric contacts ; Electric potential ; Electrical junctions ; Electrical properties ; Electron tunneling ; Electronic devices ; Energy levels ; Engineering Sciences ; Glass substrates ; Gold ; Histograms ; Mesoscopic Systems and Quantum Hall Effect ; Molecular orbitals ; Nanotechnology devices ; NMR ; Nuclear magnetic resonance ; Physics ; Polyoxometallates ; Rinsing ; Self-assembled monolayers ; Self-assembly ; Storage capacity</subject><ispartof>Nanoscale, 2019-01, Vol.11 (4), p.1863-1878</ispartof><rights>Copyright Royal Society of Chemistry 2019</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c230f-1d950615be10a1252c576b1d79d3420a6eeb2470d2bf81e34dc01a43bdfc5dbf3</citedby><cites>FETCH-LOGICAL-c230f-1d950615be10a1252c576b1d79d3420a6eeb2470d2bf81e34dc01a43bdfc5dbf3</cites><orcidid>0000-0002-9849-4939 ; 0000-0002-6266-3956 ; 0000-0002-0903-6507 ; 0000-0002-3362-1669 ; 0000-0002-6857-8752 ; 0000-0002-4338-1742</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,782,786,887,27931,27932</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30637426$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.sorbonne-universite.fr/hal-01981014$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Dalla Francesca, K</creatorcontrib><creatorcontrib>Lenfant, S</creatorcontrib><creatorcontrib>Laurans, M</creatorcontrib><creatorcontrib>Volatron, F</creatorcontrib><creatorcontrib>Izzet, G</creatorcontrib><creatorcontrib>Humblot, V</creatorcontrib><creatorcontrib>Methivier, C</creatorcontrib><creatorcontrib>Guerin, D</creatorcontrib><creatorcontrib>Proust, A</creatorcontrib><creatorcontrib>Vuillaume, D</creatorcontrib><title>Charge transport through redox active [H 7 P 8 W 48 O 184 ] 33- polyoxometalates self-assembled onto gold surfaces and gold nanodots</title><title>Nanoscale</title><addtitle>Nanoscale</addtitle><description>Polyoxometalates (POMs) are redox-active molecular oxides, which attract growing interest for their integration into nano-devices, such as high-density data storage non-volatile memories. In this work, we investigated the electrostatic deposition of the negatively charged [H7P8W48O184]33- POM onto positively charged 8-amino-1-octanethiol self-assembled monolayers (SAMs) preformed onto gold substrates or onto an array of gold nanodots. The ring-shaped [H7P8W48O184]33- POM was selected as an example of large POMs with high charge storage capacity. To avoid the formation of POM aggregates onto the substrates, which would introduce variability in the local electrical properties, special attention has to be paid to the preformed SAM seeding layer, which should itself be deprived of aggregates. Where necessary, rinsing steps were found to be crucial to eliminate these aggregates and to provide uniformly covered substrates for subsequent POM deposition and electrical characterizations. This especially holds for commercially available gold/glass substrates while these rinsing steps were not essential in the case of template stripped gold of very low roughness. Charge transport through the related molecular junctions and nanodot molecule junctions (NMJs) has been probed by conducting-AFM. We analyzed the current-voltage curves with different models: electron tunneling though the SAMs (Simmons model), transition voltage spectroscopy (TVS) method or molecular single energy level mediated transport (Landauer equation) and we discussed the energetics of the molecular junctions. We concluded to an energy level alignment of the alkyl spacer and POM lowest occupied molecular orbitals (LUMOs), probably due to dipolar effects.</description><subject>Aggregates</subject><subject>Charge transport</subject><subject>Chemical Sciences</subject><subject>Condensed Matter</subject><subject>Data storage</subject><subject>Deposition</subject><subject>Electric contacts</subject><subject>Electric potential</subject><subject>Electrical junctions</subject><subject>Electrical properties</subject><subject>Electron tunneling</subject><subject>Electronic devices</subject><subject>Energy levels</subject><subject>Engineering Sciences</subject><subject>Glass substrates</subject><subject>Gold</subject><subject>Histograms</subject><subject>Mesoscopic Systems and Quantum Hall Effect</subject><subject>Molecular orbitals</subject><subject>Nanotechnology devices</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Physics</subject><subject>Polyoxometallates</subject><subject>Rinsing</subject><subject>Self-assembled monolayers</subject><subject>Self-assembly</subject><subject>Storage capacity</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpd0d-L1DAQB_AgineuvvgHyIAvKlQnP5q0j8fiucLiiSg-iJS0me7ukTZrkh537_7hdtlzBZ8yDB-GyXwZe87xLUdZv1tWn75gLY25fMDOBSospDTi4anW6ow9SekaUddSy8fsTKKWRgl9zn4vtzZuCHK0Y9qHmCFvY5g2W4jkwi3YLu9uCH6swMBnqOA7qAqugFcKfoKUBeyDvwu3YaBsvc2UIJHvC5sSDa0nB2HMATbBO0hT7G03Czu6Y2e0Y3Ahp6fsUW99omf374J9u3z_dbkq1lcfPi4v1kUnJPYFd3WJmpctcbRclKIrjW65M7WTSqDVRK1QBp1o-4qTVK5DbpVsXd-Vru3lgr0-zt1a3-zjbrDxrgl216wu1s2hh7yuOHJ1w2f76mj3MfyaKOVm2KWOvLcjhSk1gptaKq7nwy_Yy__odZjiOP_koFByU1Y4qzdH1cWQUqT-tAHH5pBj8y_HGb-4Hzm1A7kT_Ruc_AMJF5TE</recordid><startdate>20190123</startdate><enddate>20190123</enddate><creator>Dalla Francesca, K</creator><creator>Lenfant, S</creator><creator>Laurans, M</creator><creator>Volatron, F</creator><creator>Izzet, G</creator><creator>Humblot, V</creator><creator>Methivier, C</creator><creator>Guerin, D</creator><creator>Proust, A</creator><creator>Vuillaume, D</creator><general>Royal Society of Chemistry</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-9849-4939</orcidid><orcidid>https://orcid.org/0000-0002-6266-3956</orcidid><orcidid>https://orcid.org/0000-0002-0903-6507</orcidid><orcidid>https://orcid.org/0000-0002-3362-1669</orcidid><orcidid>https://orcid.org/0000-0002-6857-8752</orcidid><orcidid>https://orcid.org/0000-0002-4338-1742</orcidid></search><sort><creationdate>20190123</creationdate><title>Charge transport through redox active [H 7 P 8 W 48 O 184 ] 33- polyoxometalates self-assembled onto gold surfaces and gold nanodots</title><author>Dalla Francesca, K ; Lenfant, S ; Laurans, M ; Volatron, F ; Izzet, G ; Humblot, V ; Methivier, C ; Guerin, D ; Proust, A ; Vuillaume, D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c230f-1d950615be10a1252c576b1d79d3420a6eeb2470d2bf81e34dc01a43bdfc5dbf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Aggregates</topic><topic>Charge transport</topic><topic>Chemical Sciences</topic><topic>Condensed Matter</topic><topic>Data storage</topic><topic>Deposition</topic><topic>Electric contacts</topic><topic>Electric potential</topic><topic>Electrical junctions</topic><topic>Electrical properties</topic><topic>Electron tunneling</topic><topic>Electronic devices</topic><topic>Energy levels</topic><topic>Engineering Sciences</topic><topic>Glass substrates</topic><topic>Gold</topic><topic>Histograms</topic><topic>Mesoscopic Systems and Quantum Hall Effect</topic><topic>Molecular orbitals</topic><topic>Nanotechnology devices</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Physics</topic><topic>Polyoxometallates</topic><topic>Rinsing</topic><topic>Self-assembled monolayers</topic><topic>Self-assembly</topic><topic>Storage capacity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dalla Francesca, K</creatorcontrib><creatorcontrib>Lenfant, S</creatorcontrib><creatorcontrib>Laurans, M</creatorcontrib><creatorcontrib>Volatron, F</creatorcontrib><creatorcontrib>Izzet, G</creatorcontrib><creatorcontrib>Humblot, V</creatorcontrib><creatorcontrib>Methivier, C</creatorcontrib><creatorcontrib>Guerin, D</creatorcontrib><creatorcontrib>Proust, A</creatorcontrib><creatorcontrib>Vuillaume, D</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dalla Francesca, K</au><au>Lenfant, S</au><au>Laurans, M</au><au>Volatron, F</au><au>Izzet, G</au><au>Humblot, V</au><au>Methivier, C</au><au>Guerin, D</au><au>Proust, A</au><au>Vuillaume, D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Charge transport through redox active [H 7 P 8 W 48 O 184 ] 33- polyoxometalates self-assembled onto gold surfaces and gold nanodots</atitle><jtitle>Nanoscale</jtitle><addtitle>Nanoscale</addtitle><date>2019-01-23</date><risdate>2019</risdate><volume>11</volume><issue>4</issue><spage>1863</spage><epage>1878</epage><pages>1863-1878</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Polyoxometalates (POMs) are redox-active molecular oxides, which attract growing interest for their integration into nano-devices, such as high-density data storage non-volatile memories. In this work, we investigated the electrostatic deposition of the negatively charged [H7P8W48O184]33- POM onto positively charged 8-amino-1-octanethiol self-assembled monolayers (SAMs) preformed onto gold substrates or onto an array of gold nanodots. The ring-shaped [H7P8W48O184]33- POM was selected as an example of large POMs with high charge storage capacity. To avoid the formation of POM aggregates onto the substrates, which would introduce variability in the local electrical properties, special attention has to be paid to the preformed SAM seeding layer, which should itself be deprived of aggregates. Where necessary, rinsing steps were found to be crucial to eliminate these aggregates and to provide uniformly covered substrates for subsequent POM deposition and electrical characterizations. This especially holds for commercially available gold/glass substrates while these rinsing steps were not essential in the case of template stripped gold of very low roughness. Charge transport through the related molecular junctions and nanodot molecule junctions (NMJs) has been probed by conducting-AFM. We analyzed the current-voltage curves with different models: electron tunneling though the SAMs (Simmons model), transition voltage spectroscopy (TVS) method or molecular single energy level mediated transport (Landauer equation) and we discussed the energetics of the molecular junctions. We concluded to an energy level alignment of the alkyl spacer and POM lowest occupied molecular orbitals (LUMOs), probably due to dipolar effects.</abstract><cop>England</cop><pub>Royal Society of Chemistry</pub><pmid>30637426</pmid><doi>10.1039/C8NR09377F</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-9849-4939</orcidid><orcidid>https://orcid.org/0000-0002-6266-3956</orcidid><orcidid>https://orcid.org/0000-0002-0903-6507</orcidid><orcidid>https://orcid.org/0000-0002-3362-1669</orcidid><orcidid>https://orcid.org/0000-0002-6857-8752</orcidid><orcidid>https://orcid.org/0000-0002-4338-1742</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-3364 |
ispartof | Nanoscale, 2019-01, Vol.11 (4), p.1863-1878 |
issn | 2040-3364 2040-3372 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01981014v1 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Aggregates Charge transport Chemical Sciences Condensed Matter Data storage Deposition Electric contacts Electric potential Electrical junctions Electrical properties Electron tunneling Electronic devices Energy levels Engineering Sciences Glass substrates Gold Histograms Mesoscopic Systems and Quantum Hall Effect Molecular orbitals Nanotechnology devices NMR Nuclear magnetic resonance Physics Polyoxometallates Rinsing Self-assembled monolayers Self-assembly Storage capacity |
title | Charge transport through redox active [H 7 P 8 W 48 O 184 ] 33- polyoxometalates self-assembled onto gold surfaces and gold nanodots |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T13%3A09%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Charge%20transport%20through%20redox%20active%20%5BH%207%20P%208%20W%2048%20O%20184%20%5D%2033-%20polyoxometalates%20self-assembled%20onto%20gold%20surfaces%20and%20gold%20nanodots&rft.jtitle=Nanoscale&rft.au=Dalla%20Francesca,%20K&rft.date=2019-01-23&rft.volume=11&rft.issue=4&rft.spage=1863&rft.epage=1878&rft.pages=1863-1878&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/C8NR09377F&rft_dat=%3Cproquest_hal_p%3E2179341609%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2170317580&rft_id=info:pmid/30637426&rfr_iscdi=true |