Modeling of high-density compaction of granular materials by the Discrete Element Method

Cold compaction of metal powders is now commonly studied at a microscopic scale, to further our understanding of contact mechanics between grains. The Discrete Element Method (DEM) is therefore, a good compromise between calculation time and precision. DEM simulations are in general limited to a rel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of solids and structures 2009-09, Vol.46 (18), p.3357-3364
Hauptverfasser: Harthong, B., Jérier, J.-F., Dorémus, P., Imbault, D., Donzé, F.-V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3364
container_issue 18
container_start_page 3357
container_title International journal of solids and structures
container_volume 46
creator Harthong, B.
Jérier, J.-F.
Dorémus, P.
Imbault, D.
Donzé, F.-V.
description Cold compaction of metal powders is now commonly studied at a microscopic scale, to further our understanding of contact mechanics between grains. The Discrete Element Method (DEM) is therefore, a good compromise between calculation time and precision. DEM simulations are in general limited to a relative density of about 0.8, because the existing contact laws do not reproduce all the physical phenomena involved in the densification of granular media. Local contact mechanics can be studied by finite element analyses on meshed distinct elements (MDEM, Meshed Distinct Element Method). However, this method is too time-consuming when in the presence of a large number of grains. In the following work, a new analytical contact law will be formulated with MDEM which will subsequently be used to validate the DEM model. Thus, it will be possible with DEM modeling to reproduce high-density compaction of random packings up to a relative density of about 0.95. By introducing a local relative density parameter in the force–displacement relationship, the incompressibility effects which rule high-density behaviors can be introduced in the modeling of powder compaction.
doi_str_mv 10.1016/j.ijsolstr.2009.05.008
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01980922v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020768309002054</els_id><sourcerecordid>35249053</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-8122c0f7b5dea1b61391b44d4c1faf433fb9ddfd9029728cba347d273cb6db683</originalsourceid><addsrcrecordid>eNqFkM1r3DAQxUVJoZu0_0LRKZCD3dGHP3RLSNKksKGXBnITsjRea7GtjaQN7H9fL5vm2tPAzO895j1CvjMoGbD6x7b02xTGlGPJAVQJVQnQfiIr1jaq4EzWZ2QFwKFo6lZ8IecpbQFACgUr8vIUHI5-3tDQ08FvhsLhnHw-UBumnbHZh_l42kQz70cT6WQyRm_GRLsDzQPSO59sxIz0fsQJ50yfMA_BfSWf-4XCb-_zgjz_vP9z-1isfz_8ur1ZF1ZKkYuWcW6hb7rKoWFdzYRinZROWtabXgrRd8q53ingquGt7YyQjeONsF3tuiXPBbk6-Q5m1LvoJxMPOhivH2_W-rgDplpQnL-xhb08sbsYXveYsp6W53EczYxhn7SouFRQiQWsT6CNIaWI_YczA30sXW_1v9L1sXQNlV5KX4TXJyEukd88Rp2sx9mi8xFt1i74_1n8BWqrjz4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>35249053</pqid></control><display><type>article</type><title>Modeling of high-density compaction of granular materials by the Discrete Element Method</title><source>Elsevier ScienceDirect Journals Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Harthong, B. ; Jérier, J.-F. ; Dorémus, P. ; Imbault, D. ; Donzé, F.-V.</creator><creatorcontrib>Harthong, B. ; Jérier, J.-F. ; Dorémus, P. ; Imbault, D. ; Donzé, F.-V.</creatorcontrib><description>Cold compaction of metal powders is now commonly studied at a microscopic scale, to further our understanding of contact mechanics between grains. The Discrete Element Method (DEM) is therefore, a good compromise between calculation time and precision. DEM simulations are in general limited to a relative density of about 0.8, because the existing contact laws do not reproduce all the physical phenomena involved in the densification of granular media. Local contact mechanics can be studied by finite element analyses on meshed distinct elements (MDEM, Meshed Distinct Element Method). However, this method is too time-consuming when in the presence of a large number of grains. In the following work, a new analytical contact law will be formulated with MDEM which will subsequently be used to validate the DEM model. Thus, it will be possible with DEM modeling to reproduce high-density compaction of random packings up to a relative density of about 0.95. By introducing a local relative density parameter in the force–displacement relationship, the incompressibility effects which rule high-density behaviors can be introduced in the modeling of powder compaction.</description><identifier>ISSN: 0020-7683</identifier><identifier>EISSN: 1879-2146</identifier><identifier>DOI: 10.1016/j.ijsolstr.2009.05.008</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Discrete Element Method ; Engineering Sciences ; Force–displacement relationship ; Granular media ; High-density compaction ; Mechanics ; Mechanics of materials</subject><ispartof>International journal of solids and structures, 2009-09, Vol.46 (18), p.3357-3364</ispartof><rights>2009 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-8122c0f7b5dea1b61391b44d4c1faf433fb9ddfd9029728cba347d273cb6db683</citedby><cites>FETCH-LOGICAL-c443t-8122c0f7b5dea1b61391b44d4c1faf433fb9ddfd9029728cba347d273cb6db683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijsolstr.2009.05.008$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01980922$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Harthong, B.</creatorcontrib><creatorcontrib>Jérier, J.-F.</creatorcontrib><creatorcontrib>Dorémus, P.</creatorcontrib><creatorcontrib>Imbault, D.</creatorcontrib><creatorcontrib>Donzé, F.-V.</creatorcontrib><title>Modeling of high-density compaction of granular materials by the Discrete Element Method</title><title>International journal of solids and structures</title><description>Cold compaction of metal powders is now commonly studied at a microscopic scale, to further our understanding of contact mechanics between grains. The Discrete Element Method (DEM) is therefore, a good compromise between calculation time and precision. DEM simulations are in general limited to a relative density of about 0.8, because the existing contact laws do not reproduce all the physical phenomena involved in the densification of granular media. Local contact mechanics can be studied by finite element analyses on meshed distinct elements (MDEM, Meshed Distinct Element Method). However, this method is too time-consuming when in the presence of a large number of grains. In the following work, a new analytical contact law will be formulated with MDEM which will subsequently be used to validate the DEM model. Thus, it will be possible with DEM modeling to reproduce high-density compaction of random packings up to a relative density of about 0.95. By introducing a local relative density parameter in the force–displacement relationship, the incompressibility effects which rule high-density behaviors can be introduced in the modeling of powder compaction.</description><subject>Discrete Element Method</subject><subject>Engineering Sciences</subject><subject>Force–displacement relationship</subject><subject>Granular media</subject><subject>High-density compaction</subject><subject>Mechanics</subject><subject>Mechanics of materials</subject><issn>0020-7683</issn><issn>1879-2146</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkM1r3DAQxUVJoZu0_0LRKZCD3dGHP3RLSNKksKGXBnITsjRea7GtjaQN7H9fL5vm2tPAzO895j1CvjMoGbD6x7b02xTGlGPJAVQJVQnQfiIr1jaq4EzWZ2QFwKFo6lZ8IecpbQFACgUr8vIUHI5-3tDQ08FvhsLhnHw-UBumnbHZh_l42kQz70cT6WQyRm_GRLsDzQPSO59sxIz0fsQJ50yfMA_BfSWf-4XCb-_zgjz_vP9z-1isfz_8ur1ZF1ZKkYuWcW6hb7rKoWFdzYRinZROWtabXgrRd8q53ingquGt7YyQjeONsF3tuiXPBbk6-Q5m1LvoJxMPOhivH2_W-rgDplpQnL-xhb08sbsYXveYsp6W53EczYxhn7SouFRQiQWsT6CNIaWI_YczA30sXW_1v9L1sXQNlV5KX4TXJyEukd88Rp2sx9mi8xFt1i74_1n8BWqrjz4</recordid><startdate>20090901</startdate><enddate>20090901</enddate><creator>Harthong, B.</creator><creator>Jérier, J.-F.</creator><creator>Dorémus, P.</creator><creator>Imbault, D.</creator><creator>Donzé, F.-V.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>1XC</scope></search><sort><creationdate>20090901</creationdate><title>Modeling of high-density compaction of granular materials by the Discrete Element Method</title><author>Harthong, B. ; Jérier, J.-F. ; Dorémus, P. ; Imbault, D. ; Donzé, F.-V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-8122c0f7b5dea1b61391b44d4c1faf433fb9ddfd9029728cba347d273cb6db683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Discrete Element Method</topic><topic>Engineering Sciences</topic><topic>Force–displacement relationship</topic><topic>Granular media</topic><topic>High-density compaction</topic><topic>Mechanics</topic><topic>Mechanics of materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harthong, B.</creatorcontrib><creatorcontrib>Jérier, J.-F.</creatorcontrib><creatorcontrib>Dorémus, P.</creatorcontrib><creatorcontrib>Imbault, D.</creatorcontrib><creatorcontrib>Donzé, F.-V.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>International journal of solids and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harthong, B.</au><au>Jérier, J.-F.</au><au>Dorémus, P.</au><au>Imbault, D.</au><au>Donzé, F.-V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling of high-density compaction of granular materials by the Discrete Element Method</atitle><jtitle>International journal of solids and structures</jtitle><date>2009-09-01</date><risdate>2009</risdate><volume>46</volume><issue>18</issue><spage>3357</spage><epage>3364</epage><pages>3357-3364</pages><issn>0020-7683</issn><eissn>1879-2146</eissn><abstract>Cold compaction of metal powders is now commonly studied at a microscopic scale, to further our understanding of contact mechanics between grains. The Discrete Element Method (DEM) is therefore, a good compromise between calculation time and precision. DEM simulations are in general limited to a relative density of about 0.8, because the existing contact laws do not reproduce all the physical phenomena involved in the densification of granular media. Local contact mechanics can be studied by finite element analyses on meshed distinct elements (MDEM, Meshed Distinct Element Method). However, this method is too time-consuming when in the presence of a large number of grains. In the following work, a new analytical contact law will be formulated with MDEM which will subsequently be used to validate the DEM model. Thus, it will be possible with DEM modeling to reproduce high-density compaction of random packings up to a relative density of about 0.95. By introducing a local relative density parameter in the force–displacement relationship, the incompressibility effects which rule high-density behaviors can be introduced in the modeling of powder compaction.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ijsolstr.2009.05.008</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0020-7683
ispartof International journal of solids and structures, 2009-09, Vol.46 (18), p.3357-3364
issn 0020-7683
1879-2146
language eng
recordid cdi_hal_primary_oai_HAL_hal_01980922v1
source Elsevier ScienceDirect Journals Complete; EZB-FREE-00999 freely available EZB journals
subjects Discrete Element Method
Engineering Sciences
Force–displacement relationship
Granular media
High-density compaction
Mechanics
Mechanics of materials
title Modeling of high-density compaction of granular materials by the Discrete Element Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A50%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20of%20high-density%20compaction%20of%20granular%20materials%20by%20the%20Discrete%20Element%20Method&rft.jtitle=International%20journal%20of%20solids%20and%20structures&rft.au=Harthong,%20B.&rft.date=2009-09-01&rft.volume=46&rft.issue=18&rft.spage=3357&rft.epage=3364&rft.pages=3357-3364&rft.issn=0020-7683&rft.eissn=1879-2146&rft_id=info:doi/10.1016/j.ijsolstr.2009.05.008&rft_dat=%3Cproquest_hal_p%3E35249053%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=35249053&rft_id=info:pmid/&rft_els_id=S0020768309002054&rfr_iscdi=true