Modeling of high-density compaction of granular materials by the Discrete Element Method
Cold compaction of metal powders is now commonly studied at a microscopic scale, to further our understanding of contact mechanics between grains. The Discrete Element Method (DEM) is therefore, a good compromise between calculation time and precision. DEM simulations are in general limited to a rel...
Gespeichert in:
Veröffentlicht in: | International journal of solids and structures 2009-09, Vol.46 (18), p.3357-3364 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3364 |
---|---|
container_issue | 18 |
container_start_page | 3357 |
container_title | International journal of solids and structures |
container_volume | 46 |
creator | Harthong, B. Jérier, J.-F. Dorémus, P. Imbault, D. Donzé, F.-V. |
description | Cold compaction of metal powders is now commonly studied at a microscopic scale, to further our understanding of contact mechanics between grains. The Discrete Element Method (DEM) is therefore, a good compromise between calculation time and precision. DEM simulations are in general limited to a relative density of about 0.8, because the existing contact laws do not reproduce all the physical phenomena involved in the densification of granular media. Local contact mechanics can be studied by finite element analyses on meshed distinct elements (MDEM, Meshed Distinct Element Method). However, this method is too time-consuming when in the presence of a large number of grains. In the following work, a new analytical contact law will be formulated with MDEM which will subsequently be used to validate the DEM model. Thus, it will be possible with DEM modeling to reproduce high-density compaction of random packings up to a relative density of about 0.95. By introducing a local relative density parameter in the force–displacement relationship, the incompressibility effects which rule high-density behaviors can be introduced in the modeling of powder compaction. |
doi_str_mv | 10.1016/j.ijsolstr.2009.05.008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01980922v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0020768309002054</els_id><sourcerecordid>35249053</sourcerecordid><originalsourceid>FETCH-LOGICAL-c443t-8122c0f7b5dea1b61391b44d4c1faf433fb9ddfd9029728cba347d273cb6db683</originalsourceid><addsrcrecordid>eNqFkM1r3DAQxUVJoZu0_0LRKZCD3dGHP3RLSNKksKGXBnITsjRea7GtjaQN7H9fL5vm2tPAzO895j1CvjMoGbD6x7b02xTGlGPJAVQJVQnQfiIr1jaq4EzWZ2QFwKFo6lZ8IecpbQFACgUr8vIUHI5-3tDQ08FvhsLhnHw-UBumnbHZh_l42kQz70cT6WQyRm_GRLsDzQPSO59sxIz0fsQJ50yfMA_BfSWf-4XCb-_zgjz_vP9z-1isfz_8ur1ZF1ZKkYuWcW6hb7rKoWFdzYRinZROWtabXgrRd8q53ingquGt7YyQjeONsF3tuiXPBbk6-Q5m1LvoJxMPOhivH2_W-rgDplpQnL-xhb08sbsYXveYsp6W53EczYxhn7SouFRQiQWsT6CNIaWI_YczA30sXW_1v9L1sXQNlV5KX4TXJyEukd88Rp2sx9mi8xFt1i74_1n8BWqrjz4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>35249053</pqid></control><display><type>article</type><title>Modeling of high-density compaction of granular materials by the Discrete Element Method</title><source>Elsevier ScienceDirect Journals Complete</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Harthong, B. ; Jérier, J.-F. ; Dorémus, P. ; Imbault, D. ; Donzé, F.-V.</creator><creatorcontrib>Harthong, B. ; Jérier, J.-F. ; Dorémus, P. ; Imbault, D. ; Donzé, F.-V.</creatorcontrib><description>Cold compaction of metal powders is now commonly studied at a microscopic scale, to further our understanding of contact mechanics between grains. The Discrete Element Method (DEM) is therefore, a good compromise between calculation time and precision. DEM simulations are in general limited to a relative density of about 0.8, because the existing contact laws do not reproduce all the physical phenomena involved in the densification of granular media. Local contact mechanics can be studied by finite element analyses on meshed distinct elements (MDEM, Meshed Distinct Element Method). However, this method is too time-consuming when in the presence of a large number of grains. In the following work, a new analytical contact law will be formulated with MDEM which will subsequently be used to validate the DEM model. Thus, it will be possible with DEM modeling to reproduce high-density compaction of random packings up to a relative density of about 0.95. By introducing a local relative density parameter in the force–displacement relationship, the incompressibility effects which rule high-density behaviors can be introduced in the modeling of powder compaction.</description><identifier>ISSN: 0020-7683</identifier><identifier>EISSN: 1879-2146</identifier><identifier>DOI: 10.1016/j.ijsolstr.2009.05.008</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Discrete Element Method ; Engineering Sciences ; Force–displacement relationship ; Granular media ; High-density compaction ; Mechanics ; Mechanics of materials</subject><ispartof>International journal of solids and structures, 2009-09, Vol.46 (18), p.3357-3364</ispartof><rights>2009 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c443t-8122c0f7b5dea1b61391b44d4c1faf433fb9ddfd9029728cba347d273cb6db683</citedby><cites>FETCH-LOGICAL-c443t-8122c0f7b5dea1b61391b44d4c1faf433fb9ddfd9029728cba347d273cb6db683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijsolstr.2009.05.008$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,3548,27922,27923,45993</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01980922$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Harthong, B.</creatorcontrib><creatorcontrib>Jérier, J.-F.</creatorcontrib><creatorcontrib>Dorémus, P.</creatorcontrib><creatorcontrib>Imbault, D.</creatorcontrib><creatorcontrib>Donzé, F.-V.</creatorcontrib><title>Modeling of high-density compaction of granular materials by the Discrete Element Method</title><title>International journal of solids and structures</title><description>Cold compaction of metal powders is now commonly studied at a microscopic scale, to further our understanding of contact mechanics between grains. The Discrete Element Method (DEM) is therefore, a good compromise between calculation time and precision. DEM simulations are in general limited to a relative density of about 0.8, because the existing contact laws do not reproduce all the physical phenomena involved in the densification of granular media. Local contact mechanics can be studied by finite element analyses on meshed distinct elements (MDEM, Meshed Distinct Element Method). However, this method is too time-consuming when in the presence of a large number of grains. In the following work, a new analytical contact law will be formulated with MDEM which will subsequently be used to validate the DEM model. Thus, it will be possible with DEM modeling to reproduce high-density compaction of random packings up to a relative density of about 0.95. By introducing a local relative density parameter in the force–displacement relationship, the incompressibility effects which rule high-density behaviors can be introduced in the modeling of powder compaction.</description><subject>Discrete Element Method</subject><subject>Engineering Sciences</subject><subject>Force–displacement relationship</subject><subject>Granular media</subject><subject>High-density compaction</subject><subject>Mechanics</subject><subject>Mechanics of materials</subject><issn>0020-7683</issn><issn>1879-2146</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNqFkM1r3DAQxUVJoZu0_0LRKZCD3dGHP3RLSNKksKGXBnITsjRea7GtjaQN7H9fL5vm2tPAzO895j1CvjMoGbD6x7b02xTGlGPJAVQJVQnQfiIr1jaq4EzWZ2QFwKFo6lZ8IecpbQFACgUr8vIUHI5-3tDQ08FvhsLhnHw-UBumnbHZh_l42kQz70cT6WQyRm_GRLsDzQPSO59sxIz0fsQJ50yfMA_BfSWf-4XCb-_zgjz_vP9z-1isfz_8ur1ZF1ZKkYuWcW6hb7rKoWFdzYRinZROWtabXgrRd8q53ingquGt7YyQjeONsF3tuiXPBbk6-Q5m1LvoJxMPOhivH2_W-rgDplpQnL-xhb08sbsYXveYsp6W53EczYxhn7SouFRQiQWsT6CNIaWI_YczA30sXW_1v9L1sXQNlV5KX4TXJyEukd88Rp2sx9mi8xFt1i74_1n8BWqrjz4</recordid><startdate>20090901</startdate><enddate>20090901</enddate><creator>Harthong, B.</creator><creator>Jérier, J.-F.</creator><creator>Dorémus, P.</creator><creator>Imbault, D.</creator><creator>Donzé, F.-V.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7TB</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><scope>1XC</scope></search><sort><creationdate>20090901</creationdate><title>Modeling of high-density compaction of granular materials by the Discrete Element Method</title><author>Harthong, B. ; Jérier, J.-F. ; Dorémus, P. ; Imbault, D. ; Donzé, F.-V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c443t-8122c0f7b5dea1b61391b44d4c1faf433fb9ddfd9029728cba347d273cb6db683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Discrete Element Method</topic><topic>Engineering Sciences</topic><topic>Force–displacement relationship</topic><topic>Granular media</topic><topic>High-density compaction</topic><topic>Mechanics</topic><topic>Mechanics of materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harthong, B.</creatorcontrib><creatorcontrib>Jérier, J.-F.</creatorcontrib><creatorcontrib>Dorémus, P.</creatorcontrib><creatorcontrib>Imbault, D.</creatorcontrib><creatorcontrib>Donzé, F.-V.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>International journal of solids and structures</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harthong, B.</au><au>Jérier, J.-F.</au><au>Dorémus, P.</au><au>Imbault, D.</au><au>Donzé, F.-V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling of high-density compaction of granular materials by the Discrete Element Method</atitle><jtitle>International journal of solids and structures</jtitle><date>2009-09-01</date><risdate>2009</risdate><volume>46</volume><issue>18</issue><spage>3357</spage><epage>3364</epage><pages>3357-3364</pages><issn>0020-7683</issn><eissn>1879-2146</eissn><abstract>Cold compaction of metal powders is now commonly studied at a microscopic scale, to further our understanding of contact mechanics between grains. The Discrete Element Method (DEM) is therefore, a good compromise between calculation time and precision. DEM simulations are in general limited to a relative density of about 0.8, because the existing contact laws do not reproduce all the physical phenomena involved in the densification of granular media. Local contact mechanics can be studied by finite element analyses on meshed distinct elements (MDEM, Meshed Distinct Element Method). However, this method is too time-consuming when in the presence of a large number of grains. In the following work, a new analytical contact law will be formulated with MDEM which will subsequently be used to validate the DEM model. Thus, it will be possible with DEM modeling to reproduce high-density compaction of random packings up to a relative density of about 0.95. By introducing a local relative density parameter in the force–displacement relationship, the incompressibility effects which rule high-density behaviors can be introduced in the modeling of powder compaction.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.ijsolstr.2009.05.008</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0020-7683 |
ispartof | International journal of solids and structures, 2009-09, Vol.46 (18), p.3357-3364 |
issn | 0020-7683 1879-2146 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01980922v1 |
source | Elsevier ScienceDirect Journals Complete; EZB-FREE-00999 freely available EZB journals |
subjects | Discrete Element Method Engineering Sciences Force–displacement relationship Granular media High-density compaction Mechanics Mechanics of materials |
title | Modeling of high-density compaction of granular materials by the Discrete Element Method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A50%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20of%20high-density%20compaction%20of%20granular%20materials%20by%20the%20Discrete%20Element%20Method&rft.jtitle=International%20journal%20of%20solids%20and%20structures&rft.au=Harthong,%20B.&rft.date=2009-09-01&rft.volume=46&rft.issue=18&rft.spage=3357&rft.epage=3364&rft.pages=3357-3364&rft.issn=0020-7683&rft.eissn=1879-2146&rft_id=info:doi/10.1016/j.ijsolstr.2009.05.008&rft_dat=%3Cproquest_hal_p%3E35249053%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=35249053&rft_id=info:pmid/&rft_els_id=S0020768309002054&rfr_iscdi=true |