Tensile behaviour of uncured sheet moulding compounds: Rheology and flow-induced microstructures
During compression moulding, Sheet Moulding Compounds (SMCs) are subjected to tensile strains that yield detrimental tears. To understand these mechanisms, tensile experiments were performed with two uncured industrial SMC formulations with low and high pore and fibre contents. These experiments wer...
Gespeichert in:
Veröffentlicht in: | Composites. Part A, Applied science and manufacturing Applied science and manufacturing, 2017-10, Vol.101, p.459-470 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 470 |
---|---|
container_issue | |
container_start_page | 459 |
container_title | Composites. Part A, Applied science and manufacturing |
container_volume | 101 |
creator | Ferré Sentis, D. Cochereau, T. Orgéas, L. Dumont, P.J.J. Rolland du Roscoat, S. Laurencin, T. Terrien, M. Sager, M. |
description | During compression moulding, Sheet Moulding Compounds (SMCs) are subjected to tensile strains that yield detrimental tears. To understand these mechanisms, tensile experiments were performed with two uncured industrial SMC formulations with low and high pore and fibre contents. These experiments were coupled with Digital Image Correlation to estimate mesoscale strain fields on the sample surface. X-ray microtomography was used to obtain 3D ex situ evolutions of pores and fibre-bundle orientation. Both formulations behaved as porous, elastoviscoplastic, anisotropic and shear thinning fluids, showing strain hardening followed by softening and sample breakage. During stretching, SMCs dilated with anisotropic pore growth, whereas fibre bundles aligned along the tensile direction following the prediction of the modified Jeffery’s equation. In addition, the ductility of SMCs was largely altered both by the initial pore contents and fibre-bundle flocs/aggregates induced during the prepreg fabrication, the latter leading to undesirable strain localisation bands enhancing sample breakage. |
doi_str_mv | 10.1016/j.compositesa.2017.07.003 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01980314v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359835X17302634</els_id><sourcerecordid>S1359835X17302634</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-388f5fbd3249f651fd1144fc6c3c9d679a7e202d7c4cc0c35450c86e56ebe58e3</originalsourceid><addsrcrecordid>eNqNUNFKwzAUDaLgnP5DfPShNWmaNvVNhjphIMgE32KX3KwZXTOSdrK_N3UiPgoX7uVyzrn3HISuKUkpocXtJlVuu3PB9hDqNCO0TEkswk7QhIpSJFzk5DTOjFeJYPz9HF2EsCERwSo6QR9L6IJtAa-gqffWDR47g4dODR40Dg1Aj7duaLXt1vj71NDpcIdfG3CtWx9w3WlsWveZ2E4PKnK2VnkXej-oPmqES3Rm6jbA1U-forfHh-Vsnixenp5n94tEMc77hAlhuFlpluWVKTg1mtI8N6pQTFW6KKu6hIxkulS5UiRyck6UKIAXsAIugE3RzVG3qVu583Zb-4N0tZXz-4Ucd4RWgjCa72nEVkfs-GnwYH4JlMgxVrmRf2KVY6ySxIqhTdHsyIVoZm_By6AsdNG59aB6qZ39h8oXAomJhQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Tensile behaviour of uncured sheet moulding compounds: Rheology and flow-induced microstructures</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Ferré Sentis, D. ; Cochereau, T. ; Orgéas, L. ; Dumont, P.J.J. ; Rolland du Roscoat, S. ; Laurencin, T. ; Terrien, M. ; Sager, M.</creator><creatorcontrib>Ferré Sentis, D. ; Cochereau, T. ; Orgéas, L. ; Dumont, P.J.J. ; Rolland du Roscoat, S. ; Laurencin, T. ; Terrien, M. ; Sager, M.</creatorcontrib><description>During compression moulding, Sheet Moulding Compounds (SMCs) are subjected to tensile strains that yield detrimental tears. To understand these mechanisms, tensile experiments were performed with two uncured industrial SMC formulations with low and high pore and fibre contents. These experiments were coupled with Digital Image Correlation to estimate mesoscale strain fields on the sample surface. X-ray microtomography was used to obtain 3D ex situ evolutions of pores and fibre-bundle orientation. Both formulations behaved as porous, elastoviscoplastic, anisotropic and shear thinning fluids, showing strain hardening followed by softening and sample breakage. During stretching, SMCs dilated with anisotropic pore growth, whereas fibre bundles aligned along the tensile direction following the prediction of the modified Jeffery’s equation. In addition, the ductility of SMCs was largely altered both by the initial pore contents and fibre-bundle flocs/aggregates induced during the prepreg fabrication, the latter leading to undesirable strain localisation bands enhancing sample breakage.</description><identifier>ISSN: 1359-835X</identifier><identifier>EISSN: 1878-5840</identifier><identifier>DOI: 10.1016/j.compositesa.2017.07.003</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>A. Prepreg ; D. Mechanical Testing ; D. X-ray microtomography ; E. Compression moulding ; Engineering Sciences</subject><ispartof>Composites. Part A, Applied science and manufacturing, 2017-10, Vol.101, p.459-470</ispartof><rights>2017 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-388f5fbd3249f651fd1144fc6c3c9d679a7e202d7c4cc0c35450c86e56ebe58e3</citedby><cites>FETCH-LOGICAL-c355t-388f5fbd3249f651fd1144fc6c3c9d679a7e202d7c4cc0c35450c86e56ebe58e3</cites><orcidid>0000-0002-4358-2835 ; 0000-0003-0306-1418</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compositesa.2017.07.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01980314$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ferré Sentis, D.</creatorcontrib><creatorcontrib>Cochereau, T.</creatorcontrib><creatorcontrib>Orgéas, L.</creatorcontrib><creatorcontrib>Dumont, P.J.J.</creatorcontrib><creatorcontrib>Rolland du Roscoat, S.</creatorcontrib><creatorcontrib>Laurencin, T.</creatorcontrib><creatorcontrib>Terrien, M.</creatorcontrib><creatorcontrib>Sager, M.</creatorcontrib><title>Tensile behaviour of uncured sheet moulding compounds: Rheology and flow-induced microstructures</title><title>Composites. Part A, Applied science and manufacturing</title><description>During compression moulding, Sheet Moulding Compounds (SMCs) are subjected to tensile strains that yield detrimental tears. To understand these mechanisms, tensile experiments were performed with two uncured industrial SMC formulations with low and high pore and fibre contents. These experiments were coupled with Digital Image Correlation to estimate mesoscale strain fields on the sample surface. X-ray microtomography was used to obtain 3D ex situ evolutions of pores and fibre-bundle orientation. Both formulations behaved as porous, elastoviscoplastic, anisotropic and shear thinning fluids, showing strain hardening followed by softening and sample breakage. During stretching, SMCs dilated with anisotropic pore growth, whereas fibre bundles aligned along the tensile direction following the prediction of the modified Jeffery’s equation. In addition, the ductility of SMCs was largely altered both by the initial pore contents and fibre-bundle flocs/aggregates induced during the prepreg fabrication, the latter leading to undesirable strain localisation bands enhancing sample breakage.</description><subject>A. Prepreg</subject><subject>D. Mechanical Testing</subject><subject>D. X-ray microtomography</subject><subject>E. Compression moulding</subject><subject>Engineering Sciences</subject><issn>1359-835X</issn><issn>1878-5840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNUNFKwzAUDaLgnP5DfPShNWmaNvVNhjphIMgE32KX3KwZXTOSdrK_N3UiPgoX7uVyzrn3HISuKUkpocXtJlVuu3PB9hDqNCO0TEkswk7QhIpSJFzk5DTOjFeJYPz9HF2EsCERwSo6QR9L6IJtAa-gqffWDR47g4dODR40Dg1Aj7duaLXt1vj71NDpcIdfG3CtWx9w3WlsWveZ2E4PKnK2VnkXej-oPmqES3Rm6jbA1U-forfHh-Vsnixenp5n94tEMc77hAlhuFlpluWVKTg1mtI8N6pQTFW6KKu6hIxkulS5UiRyck6UKIAXsAIugE3RzVG3qVu583Zb-4N0tZXz-4Ucd4RWgjCa72nEVkfs-GnwYH4JlMgxVrmRf2KVY6ySxIqhTdHsyIVoZm_By6AsdNG59aB6qZ39h8oXAomJhQ</recordid><startdate>201710</startdate><enddate>201710</enddate><creator>Ferré Sentis, D.</creator><creator>Cochereau, T.</creator><creator>Orgéas, L.</creator><creator>Dumont, P.J.J.</creator><creator>Rolland du Roscoat, S.</creator><creator>Laurencin, T.</creator><creator>Terrien, M.</creator><creator>Sager, M.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-4358-2835</orcidid><orcidid>https://orcid.org/0000-0003-0306-1418</orcidid></search><sort><creationdate>201710</creationdate><title>Tensile behaviour of uncured sheet moulding compounds: Rheology and flow-induced microstructures</title><author>Ferré Sentis, D. ; Cochereau, T. ; Orgéas, L. ; Dumont, P.J.J. ; Rolland du Roscoat, S. ; Laurencin, T. ; Terrien, M. ; Sager, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-388f5fbd3249f651fd1144fc6c3c9d679a7e202d7c4cc0c35450c86e56ebe58e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>A. Prepreg</topic><topic>D. Mechanical Testing</topic><topic>D. X-ray microtomography</topic><topic>E. Compression moulding</topic><topic>Engineering Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferré Sentis, D.</creatorcontrib><creatorcontrib>Cochereau, T.</creatorcontrib><creatorcontrib>Orgéas, L.</creatorcontrib><creatorcontrib>Dumont, P.J.J.</creatorcontrib><creatorcontrib>Rolland du Roscoat, S.</creatorcontrib><creatorcontrib>Laurencin, T.</creatorcontrib><creatorcontrib>Terrien, M.</creatorcontrib><creatorcontrib>Sager, M.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Composites. Part A, Applied science and manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferré Sentis, D.</au><au>Cochereau, T.</au><au>Orgéas, L.</au><au>Dumont, P.J.J.</au><au>Rolland du Roscoat, S.</au><au>Laurencin, T.</au><au>Terrien, M.</au><au>Sager, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tensile behaviour of uncured sheet moulding compounds: Rheology and flow-induced microstructures</atitle><jtitle>Composites. Part A, Applied science and manufacturing</jtitle><date>2017-10</date><risdate>2017</risdate><volume>101</volume><spage>459</spage><epage>470</epage><pages>459-470</pages><issn>1359-835X</issn><eissn>1878-5840</eissn><abstract>During compression moulding, Sheet Moulding Compounds (SMCs) are subjected to tensile strains that yield detrimental tears. To understand these mechanisms, tensile experiments were performed with two uncured industrial SMC formulations with low and high pore and fibre contents. These experiments were coupled with Digital Image Correlation to estimate mesoscale strain fields on the sample surface. X-ray microtomography was used to obtain 3D ex situ evolutions of pores and fibre-bundle orientation. Both formulations behaved as porous, elastoviscoplastic, anisotropic and shear thinning fluids, showing strain hardening followed by softening and sample breakage. During stretching, SMCs dilated with anisotropic pore growth, whereas fibre bundles aligned along the tensile direction following the prediction of the modified Jeffery’s equation. In addition, the ductility of SMCs was largely altered both by the initial pore contents and fibre-bundle flocs/aggregates induced during the prepreg fabrication, the latter leading to undesirable strain localisation bands enhancing sample breakage.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compositesa.2017.07.003</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4358-2835</orcidid><orcidid>https://orcid.org/0000-0003-0306-1418</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-835X |
ispartof | Composites. Part A, Applied science and manufacturing, 2017-10, Vol.101, p.459-470 |
issn | 1359-835X 1878-5840 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01980314v1 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | A. Prepreg D. Mechanical Testing D. X-ray microtomography E. Compression moulding Engineering Sciences |
title | Tensile behaviour of uncured sheet moulding compounds: Rheology and flow-induced microstructures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A00%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tensile%20behaviour%20of%20uncured%20sheet%20moulding%20compounds:%20Rheology%20and%20flow-induced%20microstructures&rft.jtitle=Composites.%20Part%20A,%20Applied%20science%20and%20manufacturing&rft.au=Ferr%C3%A9%20Sentis,%20D.&rft.date=2017-10&rft.volume=101&rft.spage=459&rft.epage=470&rft.pages=459-470&rft.issn=1359-835X&rft.eissn=1878-5840&rft_id=info:doi/10.1016/j.compositesa.2017.07.003&rft_dat=%3Celsevier_hal_p%3ES1359835X17302634%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S1359835X17302634&rfr_iscdi=true |