Tensile behaviour of uncured sheet moulding compounds: Rheology and flow-induced microstructures

During compression moulding, Sheet Moulding Compounds (SMCs) are subjected to tensile strains that yield detrimental tears. To understand these mechanisms, tensile experiments were performed with two uncured industrial SMC formulations with low and high pore and fibre contents. These experiments wer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Composites. Part A, Applied science and manufacturing Applied science and manufacturing, 2017-10, Vol.101, p.459-470
Hauptverfasser: Ferré Sentis, D., Cochereau, T., Orgéas, L., Dumont, P.J.J., Rolland du Roscoat, S., Laurencin, T., Terrien, M., Sager, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 470
container_issue
container_start_page 459
container_title Composites. Part A, Applied science and manufacturing
container_volume 101
creator Ferré Sentis, D.
Cochereau, T.
Orgéas, L.
Dumont, P.J.J.
Rolland du Roscoat, S.
Laurencin, T.
Terrien, M.
Sager, M.
description During compression moulding, Sheet Moulding Compounds (SMCs) are subjected to tensile strains that yield detrimental tears. To understand these mechanisms, tensile experiments were performed with two uncured industrial SMC formulations with low and high pore and fibre contents. These experiments were coupled with Digital Image Correlation to estimate mesoscale strain fields on the sample surface. X-ray microtomography was used to obtain 3D ex situ evolutions of pores and fibre-bundle orientation. Both formulations behaved as porous, elastoviscoplastic, anisotropic and shear thinning fluids, showing strain hardening followed by softening and sample breakage. During stretching, SMCs dilated with anisotropic pore growth, whereas fibre bundles aligned along the tensile direction following the prediction of the modified Jeffery’s equation. In addition, the ductility of SMCs was largely altered both by the initial pore contents and fibre-bundle flocs/aggregates induced during the prepreg fabrication, the latter leading to undesirable strain localisation bands enhancing sample breakage.
doi_str_mv 10.1016/j.compositesa.2017.07.003
format Article
fullrecord <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01980314v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1359835X17302634</els_id><sourcerecordid>S1359835X17302634</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-388f5fbd3249f651fd1144fc6c3c9d679a7e202d7c4cc0c35450c86e56ebe58e3</originalsourceid><addsrcrecordid>eNqNUNFKwzAUDaLgnP5DfPShNWmaNvVNhjphIMgE32KX3KwZXTOSdrK_N3UiPgoX7uVyzrn3HISuKUkpocXtJlVuu3PB9hDqNCO0TEkswk7QhIpSJFzk5DTOjFeJYPz9HF2EsCERwSo6QR9L6IJtAa-gqffWDR47g4dODR40Dg1Aj7duaLXt1vj71NDpcIdfG3CtWx9w3WlsWveZ2E4PKnK2VnkXej-oPmqES3Rm6jbA1U-forfHh-Vsnixenp5n94tEMc77hAlhuFlpluWVKTg1mtI8N6pQTFW6KKu6hIxkulS5UiRyck6UKIAXsAIugE3RzVG3qVu583Zb-4N0tZXz-4Ucd4RWgjCa72nEVkfs-GnwYH4JlMgxVrmRf2KVY6ySxIqhTdHsyIVoZm_By6AsdNG59aB6qZ39h8oXAomJhQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Tensile behaviour of uncured sheet moulding compounds: Rheology and flow-induced microstructures</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Ferré Sentis, D. ; Cochereau, T. ; Orgéas, L. ; Dumont, P.J.J. ; Rolland du Roscoat, S. ; Laurencin, T. ; Terrien, M. ; Sager, M.</creator><creatorcontrib>Ferré Sentis, D. ; Cochereau, T. ; Orgéas, L. ; Dumont, P.J.J. ; Rolland du Roscoat, S. ; Laurencin, T. ; Terrien, M. ; Sager, M.</creatorcontrib><description>During compression moulding, Sheet Moulding Compounds (SMCs) are subjected to tensile strains that yield detrimental tears. To understand these mechanisms, tensile experiments were performed with two uncured industrial SMC formulations with low and high pore and fibre contents. These experiments were coupled with Digital Image Correlation to estimate mesoscale strain fields on the sample surface. X-ray microtomography was used to obtain 3D ex situ evolutions of pores and fibre-bundle orientation. Both formulations behaved as porous, elastoviscoplastic, anisotropic and shear thinning fluids, showing strain hardening followed by softening and sample breakage. During stretching, SMCs dilated with anisotropic pore growth, whereas fibre bundles aligned along the tensile direction following the prediction of the modified Jeffery’s equation. In addition, the ductility of SMCs was largely altered both by the initial pore contents and fibre-bundle flocs/aggregates induced during the prepreg fabrication, the latter leading to undesirable strain localisation bands enhancing sample breakage.</description><identifier>ISSN: 1359-835X</identifier><identifier>EISSN: 1878-5840</identifier><identifier>DOI: 10.1016/j.compositesa.2017.07.003</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>A. Prepreg ; D. Mechanical Testing ; D. X-ray microtomography ; E. Compression moulding ; Engineering Sciences</subject><ispartof>Composites. Part A, Applied science and manufacturing, 2017-10, Vol.101, p.459-470</ispartof><rights>2017 Elsevier Ltd</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-388f5fbd3249f651fd1144fc6c3c9d679a7e202d7c4cc0c35450c86e56ebe58e3</citedby><cites>FETCH-LOGICAL-c355t-388f5fbd3249f651fd1144fc6c3c9d679a7e202d7c4cc0c35450c86e56ebe58e3</cites><orcidid>0000-0002-4358-2835 ; 0000-0003-0306-1418</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compositesa.2017.07.003$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01980314$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Ferré Sentis, D.</creatorcontrib><creatorcontrib>Cochereau, T.</creatorcontrib><creatorcontrib>Orgéas, L.</creatorcontrib><creatorcontrib>Dumont, P.J.J.</creatorcontrib><creatorcontrib>Rolland du Roscoat, S.</creatorcontrib><creatorcontrib>Laurencin, T.</creatorcontrib><creatorcontrib>Terrien, M.</creatorcontrib><creatorcontrib>Sager, M.</creatorcontrib><title>Tensile behaviour of uncured sheet moulding compounds: Rheology and flow-induced microstructures</title><title>Composites. Part A, Applied science and manufacturing</title><description>During compression moulding, Sheet Moulding Compounds (SMCs) are subjected to tensile strains that yield detrimental tears. To understand these mechanisms, tensile experiments were performed with two uncured industrial SMC formulations with low and high pore and fibre contents. These experiments were coupled with Digital Image Correlation to estimate mesoscale strain fields on the sample surface. X-ray microtomography was used to obtain 3D ex situ evolutions of pores and fibre-bundle orientation. Both formulations behaved as porous, elastoviscoplastic, anisotropic and shear thinning fluids, showing strain hardening followed by softening and sample breakage. During stretching, SMCs dilated with anisotropic pore growth, whereas fibre bundles aligned along the tensile direction following the prediction of the modified Jeffery’s equation. In addition, the ductility of SMCs was largely altered both by the initial pore contents and fibre-bundle flocs/aggregates induced during the prepreg fabrication, the latter leading to undesirable strain localisation bands enhancing sample breakage.</description><subject>A. Prepreg</subject><subject>D. Mechanical Testing</subject><subject>D. X-ray microtomography</subject><subject>E. Compression moulding</subject><subject>Engineering Sciences</subject><issn>1359-835X</issn><issn>1878-5840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNUNFKwzAUDaLgnP5DfPShNWmaNvVNhjphIMgE32KX3KwZXTOSdrK_N3UiPgoX7uVyzrn3HISuKUkpocXtJlVuu3PB9hDqNCO0TEkswk7QhIpSJFzk5DTOjFeJYPz9HF2EsCERwSo6QR9L6IJtAa-gqffWDR47g4dODR40Dg1Aj7duaLXt1vj71NDpcIdfG3CtWx9w3WlsWveZ2E4PKnK2VnkXej-oPmqES3Rm6jbA1U-forfHh-Vsnixenp5n94tEMc77hAlhuFlpluWVKTg1mtI8N6pQTFW6KKu6hIxkulS5UiRyck6UKIAXsAIugE3RzVG3qVu583Zb-4N0tZXz-4Ucd4RWgjCa72nEVkfs-GnwYH4JlMgxVrmRf2KVY6ySxIqhTdHsyIVoZm_By6AsdNG59aB6qZ39h8oXAomJhQ</recordid><startdate>201710</startdate><enddate>201710</enddate><creator>Ferré Sentis, D.</creator><creator>Cochereau, T.</creator><creator>Orgéas, L.</creator><creator>Dumont, P.J.J.</creator><creator>Rolland du Roscoat, S.</creator><creator>Laurencin, T.</creator><creator>Terrien, M.</creator><creator>Sager, M.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-4358-2835</orcidid><orcidid>https://orcid.org/0000-0003-0306-1418</orcidid></search><sort><creationdate>201710</creationdate><title>Tensile behaviour of uncured sheet moulding compounds: Rheology and flow-induced microstructures</title><author>Ferré Sentis, D. ; Cochereau, T. ; Orgéas, L. ; Dumont, P.J.J. ; Rolland du Roscoat, S. ; Laurencin, T. ; Terrien, M. ; Sager, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-388f5fbd3249f651fd1144fc6c3c9d679a7e202d7c4cc0c35450c86e56ebe58e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>A. Prepreg</topic><topic>D. Mechanical Testing</topic><topic>D. X-ray microtomography</topic><topic>E. Compression moulding</topic><topic>Engineering Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferré Sentis, D.</creatorcontrib><creatorcontrib>Cochereau, T.</creatorcontrib><creatorcontrib>Orgéas, L.</creatorcontrib><creatorcontrib>Dumont, P.J.J.</creatorcontrib><creatorcontrib>Rolland du Roscoat, S.</creatorcontrib><creatorcontrib>Laurencin, T.</creatorcontrib><creatorcontrib>Terrien, M.</creatorcontrib><creatorcontrib>Sager, M.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Composites. Part A, Applied science and manufacturing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferré Sentis, D.</au><au>Cochereau, T.</au><au>Orgéas, L.</au><au>Dumont, P.J.J.</au><au>Rolland du Roscoat, S.</au><au>Laurencin, T.</au><au>Terrien, M.</au><au>Sager, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tensile behaviour of uncured sheet moulding compounds: Rheology and flow-induced microstructures</atitle><jtitle>Composites. Part A, Applied science and manufacturing</jtitle><date>2017-10</date><risdate>2017</risdate><volume>101</volume><spage>459</spage><epage>470</epage><pages>459-470</pages><issn>1359-835X</issn><eissn>1878-5840</eissn><abstract>During compression moulding, Sheet Moulding Compounds (SMCs) are subjected to tensile strains that yield detrimental tears. To understand these mechanisms, tensile experiments were performed with two uncured industrial SMC formulations with low and high pore and fibre contents. These experiments were coupled with Digital Image Correlation to estimate mesoscale strain fields on the sample surface. X-ray microtomography was used to obtain 3D ex situ evolutions of pores and fibre-bundle orientation. Both formulations behaved as porous, elastoviscoplastic, anisotropic and shear thinning fluids, showing strain hardening followed by softening and sample breakage. During stretching, SMCs dilated with anisotropic pore growth, whereas fibre bundles aligned along the tensile direction following the prediction of the modified Jeffery’s equation. In addition, the ductility of SMCs was largely altered both by the initial pore contents and fibre-bundle flocs/aggregates induced during the prepreg fabrication, the latter leading to undesirable strain localisation bands enhancing sample breakage.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.compositesa.2017.07.003</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-4358-2835</orcidid><orcidid>https://orcid.org/0000-0003-0306-1418</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1359-835X
ispartof Composites. Part A, Applied science and manufacturing, 2017-10, Vol.101, p.459-470
issn 1359-835X
1878-5840
language eng
recordid cdi_hal_primary_oai_HAL_hal_01980314v1
source ScienceDirect Journals (5 years ago - present)
subjects A. Prepreg
D. Mechanical Testing
D. X-ray microtomography
E. Compression moulding
Engineering Sciences
title Tensile behaviour of uncured sheet moulding compounds: Rheology and flow-induced microstructures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A00%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tensile%20behaviour%20of%20uncured%20sheet%20moulding%20compounds:%20Rheology%20and%20flow-induced%20microstructures&rft.jtitle=Composites.%20Part%20A,%20Applied%20science%20and%20manufacturing&rft.au=Ferr%C3%A9%20Sentis,%20D.&rft.date=2017-10&rft.volume=101&rft.spage=459&rft.epage=470&rft.pages=459-470&rft.issn=1359-835X&rft.eissn=1878-5840&rft_id=info:doi/10.1016/j.compositesa.2017.07.003&rft_dat=%3Celsevier_hal_p%3ES1359835X17302634%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S1359835X17302634&rfr_iscdi=true