Stress Concentrations in Weak Snowpack Layers and Conditions for Slab Avalanche Release

Dry‐snow slab avalanches release due to the formation of a crack in a weak layer buried below cohesive snow slabs, followed by rapid crack propagation. The onset of rapid crack propagation occurs if stresses at the crack tip in the weak layer overcome its strength. In this study, we use the finite e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters 2018-08, Vol.45 (16), p.8363-8369
Hauptverfasser: Gaume, J., Chambon, G., Herwijnen, A. van, Schweizer, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8369
container_issue 16
container_start_page 8363
container_title Geophysical research letters
container_volume 45
creator Gaume, J.
Chambon, G.
Herwijnen, A. van
Schweizer, J.
description Dry‐snow slab avalanches release due to the formation of a crack in a weak layer buried below cohesive snow slabs, followed by rapid crack propagation. The onset of rapid crack propagation occurs if stresses at the crack tip in the weak layer overcome its strength. In this study, we use the finite element method to evaluate the maximum shear stress τmax induced by a preexisting crack in a weak snow layer allowing for the bending of the overlaying slab. It is shown that τmax increases with increasing crack length, slab thickness, slab density, weak layer elastic modulus, and slope angle. In contrast, τmax decreases with increasing elastic modulus of the slab. Assuming a realistic failure envelope, we computed the critical crack length ac for the onset of crack propagation. The model allows for remote triggering from flat (or low angle) terrain. Yet it shows that the critical crack length decreases with increasing slope angle. Plain Language Summary Dry‐snow slab avalanches release due to the formation of a crack in a weak layer buried below cohesive snow slabs, followed by rapid crack propagation. Characterizing conditions for the onset of crack propagation in snow is a great challenge and has been the subject of several investigations. Yet there is still no consensus about the nature of the initial failure in the weak layer, whether it occurs in shear only or if the collapse of the weak layer helps to drive crack propagation. Here, to investigate this question, we employed a numerical model to study stress concentrations in the weak layer in the presence of a preexisting crack, allowing the bending of the overlaying slab. We computed the maximum shear stress close to the crack tip for different system configurations and mechanical properties. We showed that steeper slopes promote crack propagation as predicted by classical shear models. However, the collapse of the weak layer is essential for crack propagation from flat terrain and thus remote avalanche triggering. Key Points We evaluate the effect of slab deformation on the onset of crack propagation in buried weak snow layers using the finite element method The critical crack length for the onset of crack propagation decreases with increasing slope angle Slab bending, induced by weak layer collapse, is essential for crack propagation from flat terrain and thus remote avalanche triggering
doi_str_mv 10.1029/2018GL078900
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01978621v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2111883418</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3787-547e4deedafa33271df332c9d5c399cdaa76cd180418ec1586fdaee92f0933ea3</originalsourceid><addsrcrecordid>eNp90FFLwzAQAOAgCs7pmz8g4JNg9dJ0S_I4hm5CQdiUPYYzubJutZ3J3Ni_t6MiPnkvdxwfd8cxdi3gXkBqHlIQepKD0gbghPWEybJEA6hT1gMwbZ2q4Tm7iHEFABKk6LHFfBsoRj5uakf1NuC2bOrIy5ovCNd8Xjf7Dbo1z_FAIXKs_ZH6smNFE_i8wnc-2mGFtVsSn1FFGOmSnRVYRbr6yX329vT4Op4m-cvkeTzKEyeVVskgU5R5Io8FSpkq4Ys2OeMHThrjPKIaOi80ZEKTEwM9LDwSmbQAIyWh7LPbbu4SK7sJ5QeGg22wtNNRbo89EEbpYSp2orU3nd2E5vOL4taumq9Qt-fZVAihtWy3tOquUy40MQYqfscKsMc3279vbnna8X1Z0eFfayezfKDakN-JcH1Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2111883418</pqid></control><display><type>article</type><title>Stress Concentrations in Weak Snowpack Layers and Conditions for Slab Avalanche Release</title><source>Wiley Online Library AGU 2017</source><source>Wiley-Blackwell Open Access Backfiles (Open Access)</source><source>Wiley Online Library Journals Frontfile Complete</source><source>EZB Electronic Journals Library</source><creator>Gaume, J. ; Chambon, G. ; Herwijnen, A. van ; Schweizer, J.</creator><creatorcontrib>Gaume, J. ; Chambon, G. ; Herwijnen, A. van ; Schweizer, J.</creatorcontrib><description>Dry‐snow slab avalanches release due to the formation of a crack in a weak layer buried below cohesive snow slabs, followed by rapid crack propagation. The onset of rapid crack propagation occurs if stresses at the crack tip in the weak layer overcome its strength. In this study, we use the finite element method to evaluate the maximum shear stress τmax induced by a preexisting crack in a weak snow layer allowing for the bending of the overlaying slab. It is shown that τmax increases with increasing crack length, slab thickness, slab density, weak layer elastic modulus, and slope angle. In contrast, τmax decreases with increasing elastic modulus of the slab. Assuming a realistic failure envelope, we computed the critical crack length ac for the onset of crack propagation. The model allows for remote triggering from flat (or low angle) terrain. Yet it shows that the critical crack length decreases with increasing slope angle. Plain Language Summary Dry‐snow slab avalanches release due to the formation of a crack in a weak layer buried below cohesive snow slabs, followed by rapid crack propagation. Characterizing conditions for the onset of crack propagation in snow is a great challenge and has been the subject of several investigations. Yet there is still no consensus about the nature of the initial failure in the weak layer, whether it occurs in shear only or if the collapse of the weak layer helps to drive crack propagation. Here, to investigate this question, we employed a numerical model to study stress concentrations in the weak layer in the presence of a preexisting crack, allowing the bending of the overlaying slab. We computed the maximum shear stress close to the crack tip for different system configurations and mechanical properties. We showed that steeper slopes promote crack propagation as predicted by classical shear models. However, the collapse of the weak layer is essential for crack propagation from flat terrain and thus remote avalanche triggering. Key Points We evaluate the effect of slab deformation on the onset of crack propagation in buried weak snow layers using the finite element method The critical crack length for the onset of crack propagation decreases with increasing slope angle Slab bending, induced by weak layer collapse, is essential for crack propagation from flat terrain and thus remote avalanche triggering</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1029/2018GL078900</identifier><language>eng</language><publisher>Washington: John Wiley &amp; Sons, Inc</publisher><subject>avalanche ; Avalanches ; Collapse ; Computation ; Crack propagation ; Crack tips ; Deformation ; Earth Sciences ; Finite element method ; Glaciology ; Landslides ; Length ; Mathematical models ; Mechanical properties ; Mechanics ; Mechanics of materials ; Modulus of elasticity ; Numerical models ; Overlaying ; Physics ; Propagation ; Sciences of the Universe ; Shear stress ; slab ; Slabs ; Slope ; Slopes ; Snow ; Snow avalanches ; Snowpack ; stress concentration ; Stress propagation ; Terrain ; Thickness ; weak layer</subject><ispartof>Geophysical research letters, 2018-08, Vol.45 (16), p.8363-8369</ispartof><rights>2018. The Authors.</rights><rights>2018. American Geophysical Union. All Rights Reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3787-547e4deedafa33271df332c9d5c399cdaa76cd180418ec1586fdaee92f0933ea3</citedby><cites>FETCH-LOGICAL-c3787-547e4deedafa33271df332c9d5c399cdaa76cd180418ec1586fdaee92f0933ea3</cites><orcidid>0000-0001-5637-6486 ; 0000-0002-9812-9683 ; 0000-0001-8931-752X ; 0000-0001-5076-2968</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2018GL078900$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2018GL078900$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,11494,27903,27904,45553,45554,46388,46447,46812,46871</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01978621$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gaume, J.</creatorcontrib><creatorcontrib>Chambon, G.</creatorcontrib><creatorcontrib>Herwijnen, A. van</creatorcontrib><creatorcontrib>Schweizer, J.</creatorcontrib><title>Stress Concentrations in Weak Snowpack Layers and Conditions for Slab Avalanche Release</title><title>Geophysical research letters</title><description>Dry‐snow slab avalanches release due to the formation of a crack in a weak layer buried below cohesive snow slabs, followed by rapid crack propagation. The onset of rapid crack propagation occurs if stresses at the crack tip in the weak layer overcome its strength. In this study, we use the finite element method to evaluate the maximum shear stress τmax induced by a preexisting crack in a weak snow layer allowing for the bending of the overlaying slab. It is shown that τmax increases with increasing crack length, slab thickness, slab density, weak layer elastic modulus, and slope angle. In contrast, τmax decreases with increasing elastic modulus of the slab. Assuming a realistic failure envelope, we computed the critical crack length ac for the onset of crack propagation. The model allows for remote triggering from flat (or low angle) terrain. Yet it shows that the critical crack length decreases with increasing slope angle. Plain Language Summary Dry‐snow slab avalanches release due to the formation of a crack in a weak layer buried below cohesive snow slabs, followed by rapid crack propagation. Characterizing conditions for the onset of crack propagation in snow is a great challenge and has been the subject of several investigations. Yet there is still no consensus about the nature of the initial failure in the weak layer, whether it occurs in shear only or if the collapse of the weak layer helps to drive crack propagation. Here, to investigate this question, we employed a numerical model to study stress concentrations in the weak layer in the presence of a preexisting crack, allowing the bending of the overlaying slab. We computed the maximum shear stress close to the crack tip for different system configurations and mechanical properties. We showed that steeper slopes promote crack propagation as predicted by classical shear models. However, the collapse of the weak layer is essential for crack propagation from flat terrain and thus remote avalanche triggering. Key Points We evaluate the effect of slab deformation on the onset of crack propagation in buried weak snow layers using the finite element method The critical crack length for the onset of crack propagation decreases with increasing slope angle Slab bending, induced by weak layer collapse, is essential for crack propagation from flat terrain and thus remote avalanche triggering</description><subject>avalanche</subject><subject>Avalanches</subject><subject>Collapse</subject><subject>Computation</subject><subject>Crack propagation</subject><subject>Crack tips</subject><subject>Deformation</subject><subject>Earth Sciences</subject><subject>Finite element method</subject><subject>Glaciology</subject><subject>Landslides</subject><subject>Length</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Mechanics</subject><subject>Mechanics of materials</subject><subject>Modulus of elasticity</subject><subject>Numerical models</subject><subject>Overlaying</subject><subject>Physics</subject><subject>Propagation</subject><subject>Sciences of the Universe</subject><subject>Shear stress</subject><subject>slab</subject><subject>Slabs</subject><subject>Slope</subject><subject>Slopes</subject><subject>Snow</subject><subject>Snow avalanches</subject><subject>Snowpack</subject><subject>stress concentration</subject><subject>Stress propagation</subject><subject>Terrain</subject><subject>Thickness</subject><subject>weak layer</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp90FFLwzAQAOAgCs7pmz8g4JNg9dJ0S_I4hm5CQdiUPYYzubJutZ3J3Ni_t6MiPnkvdxwfd8cxdi3gXkBqHlIQepKD0gbghPWEybJEA6hT1gMwbZ2q4Tm7iHEFABKk6LHFfBsoRj5uakf1NuC2bOrIy5ovCNd8Xjf7Dbo1z_FAIXKs_ZH6smNFE_i8wnc-2mGFtVsSn1FFGOmSnRVYRbr6yX329vT4Op4m-cvkeTzKEyeVVskgU5R5Io8FSpkq4Ys2OeMHThrjPKIaOi80ZEKTEwM9LDwSmbQAIyWh7LPbbu4SK7sJ5QeGg22wtNNRbo89EEbpYSp2orU3nd2E5vOL4taumq9Qt-fZVAihtWy3tOquUy40MQYqfscKsMc3279vbnna8X1Z0eFfayezfKDakN-JcH1Q</recordid><startdate>20180828</startdate><enddate>20180828</enddate><creator>Gaume, J.</creator><creator>Chambon, G.</creator><creator>Herwijnen, A. van</creator><creator>Schweizer, J.</creator><general>John Wiley &amp; Sons, Inc</general><general>American Geophysical Union</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-5637-6486</orcidid><orcidid>https://orcid.org/0000-0002-9812-9683</orcidid><orcidid>https://orcid.org/0000-0001-8931-752X</orcidid><orcidid>https://orcid.org/0000-0001-5076-2968</orcidid></search><sort><creationdate>20180828</creationdate><title>Stress Concentrations in Weak Snowpack Layers and Conditions for Slab Avalanche Release</title><author>Gaume, J. ; Chambon, G. ; Herwijnen, A. van ; Schweizer, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3787-547e4deedafa33271df332c9d5c399cdaa76cd180418ec1586fdaee92f0933ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>avalanche</topic><topic>Avalanches</topic><topic>Collapse</topic><topic>Computation</topic><topic>Crack propagation</topic><topic>Crack tips</topic><topic>Deformation</topic><topic>Earth Sciences</topic><topic>Finite element method</topic><topic>Glaciology</topic><topic>Landslides</topic><topic>Length</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Mechanics</topic><topic>Mechanics of materials</topic><topic>Modulus of elasticity</topic><topic>Numerical models</topic><topic>Overlaying</topic><topic>Physics</topic><topic>Propagation</topic><topic>Sciences of the Universe</topic><topic>Shear stress</topic><topic>slab</topic><topic>Slabs</topic><topic>Slope</topic><topic>Slopes</topic><topic>Snow</topic><topic>Snow avalanches</topic><topic>Snowpack</topic><topic>stress concentration</topic><topic>Stress propagation</topic><topic>Terrain</topic><topic>Thickness</topic><topic>weak layer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gaume, J.</creatorcontrib><creatorcontrib>Chambon, G.</creatorcontrib><creatorcontrib>Herwijnen, A. van</creatorcontrib><creatorcontrib>Schweizer, J.</creatorcontrib><collection>Wiley-Blackwell Open Access Collection</collection><collection>Wiley-Blackwell Open Access Backfiles (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gaume, J.</au><au>Chambon, G.</au><au>Herwijnen, A. van</au><au>Schweizer, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stress Concentrations in Weak Snowpack Layers and Conditions for Slab Avalanche Release</atitle><jtitle>Geophysical research letters</jtitle><date>2018-08-28</date><risdate>2018</risdate><volume>45</volume><issue>16</issue><spage>8363</spage><epage>8369</epage><pages>8363-8369</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>Dry‐snow slab avalanches release due to the formation of a crack in a weak layer buried below cohesive snow slabs, followed by rapid crack propagation. The onset of rapid crack propagation occurs if stresses at the crack tip in the weak layer overcome its strength. In this study, we use the finite element method to evaluate the maximum shear stress τmax induced by a preexisting crack in a weak snow layer allowing for the bending of the overlaying slab. It is shown that τmax increases with increasing crack length, slab thickness, slab density, weak layer elastic modulus, and slope angle. In contrast, τmax decreases with increasing elastic modulus of the slab. Assuming a realistic failure envelope, we computed the critical crack length ac for the onset of crack propagation. The model allows for remote triggering from flat (or low angle) terrain. Yet it shows that the critical crack length decreases with increasing slope angle. Plain Language Summary Dry‐snow slab avalanches release due to the formation of a crack in a weak layer buried below cohesive snow slabs, followed by rapid crack propagation. Characterizing conditions for the onset of crack propagation in snow is a great challenge and has been the subject of several investigations. Yet there is still no consensus about the nature of the initial failure in the weak layer, whether it occurs in shear only or if the collapse of the weak layer helps to drive crack propagation. Here, to investigate this question, we employed a numerical model to study stress concentrations in the weak layer in the presence of a preexisting crack, allowing the bending of the overlaying slab. We computed the maximum shear stress close to the crack tip for different system configurations and mechanical properties. We showed that steeper slopes promote crack propagation as predicted by classical shear models. However, the collapse of the weak layer is essential for crack propagation from flat terrain and thus remote avalanche triggering. Key Points We evaluate the effect of slab deformation on the onset of crack propagation in buried weak snow layers using the finite element method The critical crack length for the onset of crack propagation decreases with increasing slope angle Slab bending, induced by weak layer collapse, is essential for crack propagation from flat terrain and thus remote avalanche triggering</abstract><cop>Washington</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1029/2018GL078900</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5637-6486</orcidid><orcidid>https://orcid.org/0000-0002-9812-9683</orcidid><orcidid>https://orcid.org/0000-0001-8931-752X</orcidid><orcidid>https://orcid.org/0000-0001-5076-2968</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-8276
ispartof Geophysical research letters, 2018-08, Vol.45 (16), p.8363-8369
issn 0094-8276
1944-8007
language eng
recordid cdi_hal_primary_oai_HAL_hal_01978621v1
source Wiley Online Library AGU 2017; Wiley-Blackwell Open Access Backfiles (Open Access); Wiley Online Library Journals Frontfile Complete; EZB Electronic Journals Library
subjects avalanche
Avalanches
Collapse
Computation
Crack propagation
Crack tips
Deformation
Earth Sciences
Finite element method
Glaciology
Landslides
Length
Mathematical models
Mechanical properties
Mechanics
Mechanics of materials
Modulus of elasticity
Numerical models
Overlaying
Physics
Propagation
Sciences of the Universe
Shear stress
slab
Slabs
Slope
Slopes
Snow
Snow avalanches
Snowpack
stress concentration
Stress propagation
Terrain
Thickness
weak layer
title Stress Concentrations in Weak Snowpack Layers and Conditions for Slab Avalanche Release
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T19%3A48%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stress%20Concentrations%20in%20Weak%20Snowpack%20Layers%20and%20Conditions%20for%20Slab%20Avalanche%20Release&rft.jtitle=Geophysical%20research%20letters&rft.au=Gaume,%20J.&rft.date=2018-08-28&rft.volume=45&rft.issue=16&rft.spage=8363&rft.epage=8369&rft.pages=8363-8369&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1029/2018GL078900&rft_dat=%3Cproquest_hal_p%3E2111883418%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2111883418&rft_id=info:pmid/&rfr_iscdi=true