Stress Concentrations in Weak Snowpack Layers and Conditions for Slab Avalanche Release
Dry‐snow slab avalanches release due to the formation of a crack in a weak layer buried below cohesive snow slabs, followed by rapid crack propagation. The onset of rapid crack propagation occurs if stresses at the crack tip in the weak layer overcome its strength. In this study, we use the finite e...
Gespeichert in:
Veröffentlicht in: | Geophysical research letters 2018-08, Vol.45 (16), p.8363-8369 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8369 |
---|---|
container_issue | 16 |
container_start_page | 8363 |
container_title | Geophysical research letters |
container_volume | 45 |
creator | Gaume, J. Chambon, G. Herwijnen, A. van Schweizer, J. |
description | Dry‐snow slab avalanches release due to the formation of a crack in a weak layer buried below cohesive snow slabs, followed by rapid crack propagation. The onset of rapid crack propagation occurs if stresses at the crack tip in the weak layer overcome its strength. In this study, we use the finite element method to evaluate the maximum shear stress τmax induced by a preexisting crack in a weak snow layer allowing for the bending of the overlaying slab. It is shown that τmax increases with increasing crack length, slab thickness, slab density, weak layer elastic modulus, and slope angle. In contrast, τmax decreases with increasing elastic modulus of the slab. Assuming a realistic failure envelope, we computed the critical crack length ac for the onset of crack propagation. The model allows for remote triggering from flat (or low angle) terrain. Yet it shows that the critical crack length decreases with increasing slope angle.
Plain Language Summary
Dry‐snow slab avalanches release due to the formation of a crack in a weak layer buried below cohesive snow slabs, followed by rapid crack propagation. Characterizing conditions for the onset of crack propagation in snow is a great challenge and has been the subject of several investigations. Yet there is still no consensus about the nature of the initial failure in the weak layer, whether it occurs in shear only or if the collapse of the weak layer helps to drive crack propagation. Here, to investigate this question, we employed a numerical model to study stress concentrations in the weak layer in the presence of a preexisting crack, allowing the bending of the overlaying slab. We computed the maximum shear stress close to the crack tip for different system configurations and mechanical properties. We showed that steeper slopes promote crack propagation as predicted by classical shear models. However, the collapse of the weak layer is essential for crack propagation from flat terrain and thus remote avalanche triggering.
Key Points
We evaluate the effect of slab deformation on the onset of crack propagation in buried weak snow layers using the finite element method
The critical crack length for the onset of crack propagation decreases with increasing slope angle
Slab bending, induced by weak layer collapse, is essential for crack propagation from flat terrain and thus remote avalanche triggering |
doi_str_mv | 10.1029/2018GL078900 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01978621v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2111883418</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3787-547e4deedafa33271df332c9d5c399cdaa76cd180418ec1586fdaee92f0933ea3</originalsourceid><addsrcrecordid>eNp90FFLwzAQAOAgCs7pmz8g4JNg9dJ0S_I4hm5CQdiUPYYzubJutZ3J3Ni_t6MiPnkvdxwfd8cxdi3gXkBqHlIQepKD0gbghPWEybJEA6hT1gMwbZ2q4Tm7iHEFABKk6LHFfBsoRj5uakf1NuC2bOrIy5ovCNd8Xjf7Dbo1z_FAIXKs_ZH6smNFE_i8wnc-2mGFtVsSn1FFGOmSnRVYRbr6yX329vT4Op4m-cvkeTzKEyeVVskgU5R5Io8FSpkq4Ys2OeMHThrjPKIaOi80ZEKTEwM9LDwSmbQAIyWh7LPbbu4SK7sJ5QeGg22wtNNRbo89EEbpYSp2orU3nd2E5vOL4taumq9Qt-fZVAihtWy3tOquUy40MQYqfscKsMc3279vbnna8X1Z0eFfayezfKDakN-JcH1Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2111883418</pqid></control><display><type>article</type><title>Stress Concentrations in Weak Snowpack Layers and Conditions for Slab Avalanche Release</title><source>Wiley Online Library AGU 2017</source><source>Wiley-Blackwell Open Access Backfiles (Open Access)</source><source>Wiley Online Library Journals Frontfile Complete</source><source>EZB Electronic Journals Library</source><creator>Gaume, J. ; Chambon, G. ; Herwijnen, A. van ; Schweizer, J.</creator><creatorcontrib>Gaume, J. ; Chambon, G. ; Herwijnen, A. van ; Schweizer, J.</creatorcontrib><description>Dry‐snow slab avalanches release due to the formation of a crack in a weak layer buried below cohesive snow slabs, followed by rapid crack propagation. The onset of rapid crack propagation occurs if stresses at the crack tip in the weak layer overcome its strength. In this study, we use the finite element method to evaluate the maximum shear stress τmax induced by a preexisting crack in a weak snow layer allowing for the bending of the overlaying slab. It is shown that τmax increases with increasing crack length, slab thickness, slab density, weak layer elastic modulus, and slope angle. In contrast, τmax decreases with increasing elastic modulus of the slab. Assuming a realistic failure envelope, we computed the critical crack length ac for the onset of crack propagation. The model allows for remote triggering from flat (or low angle) terrain. Yet it shows that the critical crack length decreases with increasing slope angle.
Plain Language Summary
Dry‐snow slab avalanches release due to the formation of a crack in a weak layer buried below cohesive snow slabs, followed by rapid crack propagation. Characterizing conditions for the onset of crack propagation in snow is a great challenge and has been the subject of several investigations. Yet there is still no consensus about the nature of the initial failure in the weak layer, whether it occurs in shear only or if the collapse of the weak layer helps to drive crack propagation. Here, to investigate this question, we employed a numerical model to study stress concentrations in the weak layer in the presence of a preexisting crack, allowing the bending of the overlaying slab. We computed the maximum shear stress close to the crack tip for different system configurations and mechanical properties. We showed that steeper slopes promote crack propagation as predicted by classical shear models. However, the collapse of the weak layer is essential for crack propagation from flat terrain and thus remote avalanche triggering.
Key Points
We evaluate the effect of slab deformation on the onset of crack propagation in buried weak snow layers using the finite element method
The critical crack length for the onset of crack propagation decreases with increasing slope angle
Slab bending, induced by weak layer collapse, is essential for crack propagation from flat terrain and thus remote avalanche triggering</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1029/2018GL078900</identifier><language>eng</language><publisher>Washington: John Wiley & Sons, Inc</publisher><subject>avalanche ; Avalanches ; Collapse ; Computation ; Crack propagation ; Crack tips ; Deformation ; Earth Sciences ; Finite element method ; Glaciology ; Landslides ; Length ; Mathematical models ; Mechanical properties ; Mechanics ; Mechanics of materials ; Modulus of elasticity ; Numerical models ; Overlaying ; Physics ; Propagation ; Sciences of the Universe ; Shear stress ; slab ; Slabs ; Slope ; Slopes ; Snow ; Snow avalanches ; Snowpack ; stress concentration ; Stress propagation ; Terrain ; Thickness ; weak layer</subject><ispartof>Geophysical research letters, 2018-08, Vol.45 (16), p.8363-8369</ispartof><rights>2018. The Authors.</rights><rights>2018. American Geophysical Union. All Rights Reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3787-547e4deedafa33271df332c9d5c399cdaa76cd180418ec1586fdaee92f0933ea3</citedby><cites>FETCH-LOGICAL-c3787-547e4deedafa33271df332c9d5c399cdaa76cd180418ec1586fdaee92f0933ea3</cites><orcidid>0000-0001-5637-6486 ; 0000-0002-9812-9683 ; 0000-0001-8931-752X ; 0000-0001-5076-2968</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2018GL078900$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2018GL078900$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,1427,11494,27903,27904,45553,45554,46388,46447,46812,46871</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01978621$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gaume, J.</creatorcontrib><creatorcontrib>Chambon, G.</creatorcontrib><creatorcontrib>Herwijnen, A. van</creatorcontrib><creatorcontrib>Schweizer, J.</creatorcontrib><title>Stress Concentrations in Weak Snowpack Layers and Conditions for Slab Avalanche Release</title><title>Geophysical research letters</title><description>Dry‐snow slab avalanches release due to the formation of a crack in a weak layer buried below cohesive snow slabs, followed by rapid crack propagation. The onset of rapid crack propagation occurs if stresses at the crack tip in the weak layer overcome its strength. In this study, we use the finite element method to evaluate the maximum shear stress τmax induced by a preexisting crack in a weak snow layer allowing for the bending of the overlaying slab. It is shown that τmax increases with increasing crack length, slab thickness, slab density, weak layer elastic modulus, and slope angle. In contrast, τmax decreases with increasing elastic modulus of the slab. Assuming a realistic failure envelope, we computed the critical crack length ac for the onset of crack propagation. The model allows for remote triggering from flat (or low angle) terrain. Yet it shows that the critical crack length decreases with increasing slope angle.
Plain Language Summary
Dry‐snow slab avalanches release due to the formation of a crack in a weak layer buried below cohesive snow slabs, followed by rapid crack propagation. Characterizing conditions for the onset of crack propagation in snow is a great challenge and has been the subject of several investigations. Yet there is still no consensus about the nature of the initial failure in the weak layer, whether it occurs in shear only or if the collapse of the weak layer helps to drive crack propagation. Here, to investigate this question, we employed a numerical model to study stress concentrations in the weak layer in the presence of a preexisting crack, allowing the bending of the overlaying slab. We computed the maximum shear stress close to the crack tip for different system configurations and mechanical properties. We showed that steeper slopes promote crack propagation as predicted by classical shear models. However, the collapse of the weak layer is essential for crack propagation from flat terrain and thus remote avalanche triggering.
Key Points
We evaluate the effect of slab deformation on the onset of crack propagation in buried weak snow layers using the finite element method
The critical crack length for the onset of crack propagation decreases with increasing slope angle
Slab bending, induced by weak layer collapse, is essential for crack propagation from flat terrain and thus remote avalanche triggering</description><subject>avalanche</subject><subject>Avalanches</subject><subject>Collapse</subject><subject>Computation</subject><subject>Crack propagation</subject><subject>Crack tips</subject><subject>Deformation</subject><subject>Earth Sciences</subject><subject>Finite element method</subject><subject>Glaciology</subject><subject>Landslides</subject><subject>Length</subject><subject>Mathematical models</subject><subject>Mechanical properties</subject><subject>Mechanics</subject><subject>Mechanics of materials</subject><subject>Modulus of elasticity</subject><subject>Numerical models</subject><subject>Overlaying</subject><subject>Physics</subject><subject>Propagation</subject><subject>Sciences of the Universe</subject><subject>Shear stress</subject><subject>slab</subject><subject>Slabs</subject><subject>Slope</subject><subject>Slopes</subject><subject>Snow</subject><subject>Snow avalanches</subject><subject>Snowpack</subject><subject>stress concentration</subject><subject>Stress propagation</subject><subject>Terrain</subject><subject>Thickness</subject><subject>weak layer</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp90FFLwzAQAOAgCs7pmz8g4JNg9dJ0S_I4hm5CQdiUPYYzubJutZ3J3Ni_t6MiPnkvdxwfd8cxdi3gXkBqHlIQepKD0gbghPWEybJEA6hT1gMwbZ2q4Tm7iHEFABKk6LHFfBsoRj5uakf1NuC2bOrIy5ovCNd8Xjf7Dbo1z_FAIXKs_ZH6smNFE_i8wnc-2mGFtVsSn1FFGOmSnRVYRbr6yX329vT4Op4m-cvkeTzKEyeVVskgU5R5Io8FSpkq4Ys2OeMHThrjPKIaOi80ZEKTEwM9LDwSmbQAIyWh7LPbbu4SK7sJ5QeGg22wtNNRbo89EEbpYSp2orU3nd2E5vOL4taumq9Qt-fZVAihtWy3tOquUy40MQYqfscKsMc3279vbnna8X1Z0eFfayezfKDakN-JcH1Q</recordid><startdate>20180828</startdate><enddate>20180828</enddate><creator>Gaume, J.</creator><creator>Chambon, G.</creator><creator>Herwijnen, A. van</creator><creator>Schweizer, J.</creator><general>John Wiley & Sons, Inc</general><general>American Geophysical Union</general><scope>24P</scope><scope>WIN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0001-5637-6486</orcidid><orcidid>https://orcid.org/0000-0002-9812-9683</orcidid><orcidid>https://orcid.org/0000-0001-8931-752X</orcidid><orcidid>https://orcid.org/0000-0001-5076-2968</orcidid></search><sort><creationdate>20180828</creationdate><title>Stress Concentrations in Weak Snowpack Layers and Conditions for Slab Avalanche Release</title><author>Gaume, J. ; Chambon, G. ; Herwijnen, A. van ; Schweizer, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3787-547e4deedafa33271df332c9d5c399cdaa76cd180418ec1586fdaee92f0933ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>avalanche</topic><topic>Avalanches</topic><topic>Collapse</topic><topic>Computation</topic><topic>Crack propagation</topic><topic>Crack tips</topic><topic>Deformation</topic><topic>Earth Sciences</topic><topic>Finite element method</topic><topic>Glaciology</topic><topic>Landslides</topic><topic>Length</topic><topic>Mathematical models</topic><topic>Mechanical properties</topic><topic>Mechanics</topic><topic>Mechanics of materials</topic><topic>Modulus of elasticity</topic><topic>Numerical models</topic><topic>Overlaying</topic><topic>Physics</topic><topic>Propagation</topic><topic>Sciences of the Universe</topic><topic>Shear stress</topic><topic>slab</topic><topic>Slabs</topic><topic>Slope</topic><topic>Slopes</topic><topic>Snow</topic><topic>Snow avalanches</topic><topic>Snowpack</topic><topic>stress concentration</topic><topic>Stress propagation</topic><topic>Terrain</topic><topic>Thickness</topic><topic>weak layer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gaume, J.</creatorcontrib><creatorcontrib>Chambon, G.</creatorcontrib><creatorcontrib>Herwijnen, A. van</creatorcontrib><creatorcontrib>Schweizer, J.</creatorcontrib><collection>Wiley-Blackwell Open Access Collection</collection><collection>Wiley-Blackwell Open Access Backfiles (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gaume, J.</au><au>Chambon, G.</au><au>Herwijnen, A. van</au><au>Schweizer, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stress Concentrations in Weak Snowpack Layers and Conditions for Slab Avalanche Release</atitle><jtitle>Geophysical research letters</jtitle><date>2018-08-28</date><risdate>2018</risdate><volume>45</volume><issue>16</issue><spage>8363</spage><epage>8369</epage><pages>8363-8369</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>Dry‐snow slab avalanches release due to the formation of a crack in a weak layer buried below cohesive snow slabs, followed by rapid crack propagation. The onset of rapid crack propagation occurs if stresses at the crack tip in the weak layer overcome its strength. In this study, we use the finite element method to evaluate the maximum shear stress τmax induced by a preexisting crack in a weak snow layer allowing for the bending of the overlaying slab. It is shown that τmax increases with increasing crack length, slab thickness, slab density, weak layer elastic modulus, and slope angle. In contrast, τmax decreases with increasing elastic modulus of the slab. Assuming a realistic failure envelope, we computed the critical crack length ac for the onset of crack propagation. The model allows for remote triggering from flat (or low angle) terrain. Yet it shows that the critical crack length decreases with increasing slope angle.
Plain Language Summary
Dry‐snow slab avalanches release due to the formation of a crack in a weak layer buried below cohesive snow slabs, followed by rapid crack propagation. Characterizing conditions for the onset of crack propagation in snow is a great challenge and has been the subject of several investigations. Yet there is still no consensus about the nature of the initial failure in the weak layer, whether it occurs in shear only or if the collapse of the weak layer helps to drive crack propagation. Here, to investigate this question, we employed a numerical model to study stress concentrations in the weak layer in the presence of a preexisting crack, allowing the bending of the overlaying slab. We computed the maximum shear stress close to the crack tip for different system configurations and mechanical properties. We showed that steeper slopes promote crack propagation as predicted by classical shear models. However, the collapse of the weak layer is essential for crack propagation from flat terrain and thus remote avalanche triggering.
Key Points
We evaluate the effect of slab deformation on the onset of crack propagation in buried weak snow layers using the finite element method
The critical crack length for the onset of crack propagation decreases with increasing slope angle
Slab bending, induced by weak layer collapse, is essential for crack propagation from flat terrain and thus remote avalanche triggering</abstract><cop>Washington</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1029/2018GL078900</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-5637-6486</orcidid><orcidid>https://orcid.org/0000-0002-9812-9683</orcidid><orcidid>https://orcid.org/0000-0001-8931-752X</orcidid><orcidid>https://orcid.org/0000-0001-5076-2968</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-8276 |
ispartof | Geophysical research letters, 2018-08, Vol.45 (16), p.8363-8369 |
issn | 0094-8276 1944-8007 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01978621v1 |
source | Wiley Online Library AGU 2017; Wiley-Blackwell Open Access Backfiles (Open Access); Wiley Online Library Journals Frontfile Complete; EZB Electronic Journals Library |
subjects | avalanche Avalanches Collapse Computation Crack propagation Crack tips Deformation Earth Sciences Finite element method Glaciology Landslides Length Mathematical models Mechanical properties Mechanics Mechanics of materials Modulus of elasticity Numerical models Overlaying Physics Propagation Sciences of the Universe Shear stress slab Slabs Slope Slopes Snow Snow avalanches Snowpack stress concentration Stress propagation Terrain Thickness weak layer |
title | Stress Concentrations in Weak Snowpack Layers and Conditions for Slab Avalanche Release |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T19%3A48%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stress%20Concentrations%20in%20Weak%20Snowpack%20Layers%20and%20Conditions%20for%20Slab%20Avalanche%20Release&rft.jtitle=Geophysical%20research%20letters&rft.au=Gaume,%20J.&rft.date=2018-08-28&rft.volume=45&rft.issue=16&rft.spage=8363&rft.epage=8369&rft.pages=8363-8369&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1029/2018GL078900&rft_dat=%3Cproquest_hal_p%3E2111883418%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2111883418&rft_id=info:pmid/&rfr_iscdi=true |