Directed evaluation
Let K be a fixed effective field. The most straightforward approach to compute with an element in the algebraic closure of K is to compute modulo its minimal polynomial. The determination of a minimal polynomial from an arbitrary annihilator requires an algorithm for polynomial factorization over K....
Gespeichert in:
Veröffentlicht in: | Journal of Complexity 2020-10, Vol.60, p.101498, Article 101498 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 101498 |
container_title | Journal of Complexity |
container_volume | 60 |
creator | van der Hoeven, Joris Lecerf, Grégoire |
description | Let K be a fixed effective field. The most straightforward approach to compute with an element in the algebraic closure of K is to compute modulo its minimal polynomial. The determination of a minimal polynomial from an arbitrary annihilator requires an algorithm for polynomial factorization over K. Unfortunately, such algorithms do not exist over generic effective fields. They do exist over fields that are explicitly generated over their prime sub-field, but they are often expensive. The dynamic evaluation paradigm, introduced by Duval and collaborators in the eighties, offers an alternative algorithmic solution for computations in the algebraic closure of K. This approach does not require an algorithm for polynomial factorization, but it still suffers from a non-trivial overhead due to suboptimal recomputations. For the first time, we design another paradigm, called directed evaluation, which combines the conceptual advantages of dynamic evaluation with a good worst case complexity bound. |
doi_str_mv | 10.1016/j.jco.2020.101498 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01966428v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0885064X20300418</els_id><sourcerecordid>oai_HAL_hal_01966428v2</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-255d1ffc6ec2a22e93bec488b0f7461faa99b75acc978147ee4925e1c464e9ab3</originalsourceid><addsrcrecordid>eNp9kEFLxDAQRoMoWFdPnrx59dA6kyZpgqdlXV2h4EXBW0jTKabUrbS14L-33YpHT8MM3xv4HmNXCAkCqts6qX2bcOCHXRh9xCIEAzHPQB-zCLSWMSjxdsrO-r4GQJQKI3Z5HzryA5XXNLrmyw2h3Z-zk8o1PV38zhV7fdi-bHZx_vz4tFnnsU8zMcRcyhKryivy3HFOJi3IC60LqDKhsHLOmCKTznuTaRQZkTBcEnqhBBlXpCt2s_x9d4397MKH675t64LdrXM73wCNUoLrkU9ZXLK-a_u-o-oPQLCzAVvbyYCdDdjFwMTcLQxNJcZAne19oL2n8tDZlm34h_4B2KZhgg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Directed evaluation</title><source>ScienceDirect Journals (5 years ago - present)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>van der Hoeven, Joris ; Lecerf, Grégoire</creator><creatorcontrib>van der Hoeven, Joris ; Lecerf, Grégoire</creatorcontrib><description>Let K be a fixed effective field. The most straightforward approach to compute with an element in the algebraic closure of K is to compute modulo its minimal polynomial. The determination of a minimal polynomial from an arbitrary annihilator requires an algorithm for polynomial factorization over K. Unfortunately, such algorithms do not exist over generic effective fields. They do exist over fields that are explicitly generated over their prime sub-field, but they are often expensive. The dynamic evaluation paradigm, introduced by Duval and collaborators in the eighties, offers an alternative algorithmic solution for computations in the algebraic closure of K. This approach does not require an algorithm for polynomial factorization, but it still suffers from a non-trivial overhead due to suboptimal recomputations. For the first time, we design another paradigm, called directed evaluation, which combines the conceptual advantages of dynamic evaluation with a good worst case complexity bound.</description><identifier>ISSN: 0885-064X</identifier><identifier>EISSN: 1090-2708</identifier><identifier>DOI: 10.1016/j.jco.2020.101498</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Accelerated tower ; Algebraic tower ; Complexity ; Computer Science ; Directed evaluation ; Dynamic evaluation ; Mathematical Software ; Triangular set</subject><ispartof>Journal of Complexity, 2020-10, Vol.60, p.101498, Article 101498</ispartof><rights>2020 Elsevier Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-255d1ffc6ec2a22e93bec488b0f7461faa99b75acc978147ee4925e1c464e9ab3</citedby><cites>FETCH-LOGICAL-c374t-255d1ffc6ec2a22e93bec488b0f7461faa99b75acc978147ee4925e1c464e9ab3</cites><orcidid>0000-0003-2244-1897</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jco.2020.101498$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3549,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01966428$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>van der Hoeven, Joris</creatorcontrib><creatorcontrib>Lecerf, Grégoire</creatorcontrib><title>Directed evaluation</title><title>Journal of Complexity</title><description>Let K be a fixed effective field. The most straightforward approach to compute with an element in the algebraic closure of K is to compute modulo its minimal polynomial. The determination of a minimal polynomial from an arbitrary annihilator requires an algorithm for polynomial factorization over K. Unfortunately, such algorithms do not exist over generic effective fields. They do exist over fields that are explicitly generated over their prime sub-field, but they are often expensive. The dynamic evaluation paradigm, introduced by Duval and collaborators in the eighties, offers an alternative algorithmic solution for computations in the algebraic closure of K. This approach does not require an algorithm for polynomial factorization, but it still suffers from a non-trivial overhead due to suboptimal recomputations. For the first time, we design another paradigm, called directed evaluation, which combines the conceptual advantages of dynamic evaluation with a good worst case complexity bound.</description><subject>Accelerated tower</subject><subject>Algebraic tower</subject><subject>Complexity</subject><subject>Computer Science</subject><subject>Directed evaluation</subject><subject>Dynamic evaluation</subject><subject>Mathematical Software</subject><subject>Triangular set</subject><issn>0885-064X</issn><issn>1090-2708</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLxDAQRoMoWFdPnrx59dA6kyZpgqdlXV2h4EXBW0jTKabUrbS14L-33YpHT8MM3xv4HmNXCAkCqts6qX2bcOCHXRh9xCIEAzHPQB-zCLSWMSjxdsrO-r4GQJQKI3Z5HzryA5XXNLrmyw2h3Z-zk8o1PV38zhV7fdi-bHZx_vz4tFnnsU8zMcRcyhKryivy3HFOJi3IC60LqDKhsHLOmCKTznuTaRQZkTBcEnqhBBlXpCt2s_x9d4397MKH675t64LdrXM73wCNUoLrkU9ZXLK-a_u-o-oPQLCzAVvbyYCdDdjFwMTcLQxNJcZAne19oL2n8tDZlm34h_4B2KZhgg</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>van der Hoeven, Joris</creator><creator>Lecerf, Grégoire</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-2244-1897</orcidid></search><sort><creationdate>202010</creationdate><title>Directed evaluation</title><author>van der Hoeven, Joris ; Lecerf, Grégoire</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-255d1ffc6ec2a22e93bec488b0f7461faa99b75acc978147ee4925e1c464e9ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accelerated tower</topic><topic>Algebraic tower</topic><topic>Complexity</topic><topic>Computer Science</topic><topic>Directed evaluation</topic><topic>Dynamic evaluation</topic><topic>Mathematical Software</topic><topic>Triangular set</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van der Hoeven, Joris</creatorcontrib><creatorcontrib>Lecerf, Grégoire</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of Complexity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van der Hoeven, Joris</au><au>Lecerf, Grégoire</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Directed evaluation</atitle><jtitle>Journal of Complexity</jtitle><date>2020-10</date><risdate>2020</risdate><volume>60</volume><spage>101498</spage><pages>101498-</pages><artnum>101498</artnum><issn>0885-064X</issn><eissn>1090-2708</eissn><abstract>Let K be a fixed effective field. The most straightforward approach to compute with an element in the algebraic closure of K is to compute modulo its minimal polynomial. The determination of a minimal polynomial from an arbitrary annihilator requires an algorithm for polynomial factorization over K. Unfortunately, such algorithms do not exist over generic effective fields. They do exist over fields that are explicitly generated over their prime sub-field, but they are often expensive. The dynamic evaluation paradigm, introduced by Duval and collaborators in the eighties, offers an alternative algorithmic solution for computations in the algebraic closure of K. This approach does not require an algorithm for polynomial factorization, but it still suffers from a non-trivial overhead due to suboptimal recomputations. For the first time, we design another paradigm, called directed evaluation, which combines the conceptual advantages of dynamic evaluation with a good worst case complexity bound.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jco.2020.101498</doi><orcidid>https://orcid.org/0000-0003-2244-1897</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-064X |
ispartof | Journal of Complexity, 2020-10, Vol.60, p.101498, Article 101498 |
issn | 0885-064X 1090-2708 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01966428v2 |
source | ScienceDirect Journals (5 years ago - present); EZB-FREE-00999 freely available EZB journals |
subjects | Accelerated tower Algebraic tower Complexity Computer Science Directed evaluation Dynamic evaluation Mathematical Software Triangular set |
title | Directed evaluation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T01%3A51%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Directed%20evaluation&rft.jtitle=Journal%20of%20Complexity&rft.au=van%20der%20Hoeven,%20Joris&rft.date=2020-10&rft.volume=60&rft.spage=101498&rft.pages=101498-&rft.artnum=101498&rft.issn=0885-064X&rft.eissn=1090-2708&rft_id=info:doi/10.1016/j.jco.2020.101498&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01966428v2%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0885064X20300418&rfr_iscdi=true |