Directed evaluation

Let K be a fixed effective field. The most straightforward approach to compute with an element in the algebraic closure of K is to compute modulo its minimal polynomial. The determination of a minimal polynomial from an arbitrary annihilator requires an algorithm for polynomial factorization over K....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Complexity 2020-10, Vol.60, p.101498, Article 101498
Hauptverfasser: van der Hoeven, Joris, Lecerf, Grégoire
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 101498
container_title Journal of Complexity
container_volume 60
creator van der Hoeven, Joris
Lecerf, Grégoire
description Let K be a fixed effective field. The most straightforward approach to compute with an element in the algebraic closure of K is to compute modulo its minimal polynomial. The determination of a minimal polynomial from an arbitrary annihilator requires an algorithm for polynomial factorization over K. Unfortunately, such algorithms do not exist over generic effective fields. They do exist over fields that are explicitly generated over their prime sub-field, but they are often expensive. The dynamic evaluation paradigm, introduced by Duval and collaborators in the eighties, offers an alternative algorithmic solution for computations in the algebraic closure of K. This approach does not require an algorithm for polynomial factorization, but it still suffers from a non-trivial overhead due to suboptimal recomputations. For the first time, we design another paradigm, called directed evaluation, which combines the conceptual advantages of dynamic evaluation with a good worst case complexity bound.
doi_str_mv 10.1016/j.jco.2020.101498
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01966428v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0885064X20300418</els_id><sourcerecordid>oai_HAL_hal_01966428v2</sourcerecordid><originalsourceid>FETCH-LOGICAL-c374t-255d1ffc6ec2a22e93bec488b0f7461faa99b75acc978147ee4925e1c464e9ab3</originalsourceid><addsrcrecordid>eNp9kEFLxDAQRoMoWFdPnrx59dA6kyZpgqdlXV2h4EXBW0jTKabUrbS14L-33YpHT8MM3xv4HmNXCAkCqts6qX2bcOCHXRh9xCIEAzHPQB-zCLSWMSjxdsrO-r4GQJQKI3Z5HzryA5XXNLrmyw2h3Z-zk8o1PV38zhV7fdi-bHZx_vz4tFnnsU8zMcRcyhKryivy3HFOJi3IC60LqDKhsHLOmCKTznuTaRQZkTBcEnqhBBlXpCt2s_x9d4397MKH675t64LdrXM73wCNUoLrkU9ZXLK-a_u-o-oPQLCzAVvbyYCdDdjFwMTcLQxNJcZAne19oL2n8tDZlm34h_4B2KZhgg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Directed evaluation</title><source>ScienceDirect Journals (5 years ago - present)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>van der Hoeven, Joris ; Lecerf, Grégoire</creator><creatorcontrib>van der Hoeven, Joris ; Lecerf, Grégoire</creatorcontrib><description>Let K be a fixed effective field. The most straightforward approach to compute with an element in the algebraic closure of K is to compute modulo its minimal polynomial. The determination of a minimal polynomial from an arbitrary annihilator requires an algorithm for polynomial factorization over K. Unfortunately, such algorithms do not exist over generic effective fields. They do exist over fields that are explicitly generated over their prime sub-field, but they are often expensive. The dynamic evaluation paradigm, introduced by Duval and collaborators in the eighties, offers an alternative algorithmic solution for computations in the algebraic closure of K. This approach does not require an algorithm for polynomial factorization, but it still suffers from a non-trivial overhead due to suboptimal recomputations. For the first time, we design another paradigm, called directed evaluation, which combines the conceptual advantages of dynamic evaluation with a good worst case complexity bound.</description><identifier>ISSN: 0885-064X</identifier><identifier>EISSN: 1090-2708</identifier><identifier>DOI: 10.1016/j.jco.2020.101498</identifier><language>eng</language><publisher>Elsevier Inc</publisher><subject>Accelerated tower ; Algebraic tower ; Complexity ; Computer Science ; Directed evaluation ; Dynamic evaluation ; Mathematical Software ; Triangular set</subject><ispartof>Journal of Complexity, 2020-10, Vol.60, p.101498, Article 101498</ispartof><rights>2020 Elsevier Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c374t-255d1ffc6ec2a22e93bec488b0f7461faa99b75acc978147ee4925e1c464e9ab3</citedby><cites>FETCH-LOGICAL-c374t-255d1ffc6ec2a22e93bec488b0f7461faa99b75acc978147ee4925e1c464e9ab3</cites><orcidid>0000-0003-2244-1897</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jco.2020.101498$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3549,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01966428$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>van der Hoeven, Joris</creatorcontrib><creatorcontrib>Lecerf, Grégoire</creatorcontrib><title>Directed evaluation</title><title>Journal of Complexity</title><description>Let K be a fixed effective field. The most straightforward approach to compute with an element in the algebraic closure of K is to compute modulo its minimal polynomial. The determination of a minimal polynomial from an arbitrary annihilator requires an algorithm for polynomial factorization over K. Unfortunately, such algorithms do not exist over generic effective fields. They do exist over fields that are explicitly generated over their prime sub-field, but they are often expensive. The dynamic evaluation paradigm, introduced by Duval and collaborators in the eighties, offers an alternative algorithmic solution for computations in the algebraic closure of K. This approach does not require an algorithm for polynomial factorization, but it still suffers from a non-trivial overhead due to suboptimal recomputations. For the first time, we design another paradigm, called directed evaluation, which combines the conceptual advantages of dynamic evaluation with a good worst case complexity bound.</description><subject>Accelerated tower</subject><subject>Algebraic tower</subject><subject>Complexity</subject><subject>Computer Science</subject><subject>Directed evaluation</subject><subject>Dynamic evaluation</subject><subject>Mathematical Software</subject><subject>Triangular set</subject><issn>0885-064X</issn><issn>1090-2708</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLxDAQRoMoWFdPnrx59dA6kyZpgqdlXV2h4EXBW0jTKabUrbS14L-33YpHT8MM3xv4HmNXCAkCqts6qX2bcOCHXRh9xCIEAzHPQB-zCLSWMSjxdsrO-r4GQJQKI3Z5HzryA5XXNLrmyw2h3Z-zk8o1PV38zhV7fdi-bHZx_vz4tFnnsU8zMcRcyhKryivy3HFOJi3IC60LqDKhsHLOmCKTznuTaRQZkTBcEnqhBBlXpCt2s_x9d4397MKH675t64LdrXM73wCNUoLrkU9ZXLK-a_u-o-oPQLCzAVvbyYCdDdjFwMTcLQxNJcZAne19oL2n8tDZlm34h_4B2KZhgg</recordid><startdate>202010</startdate><enddate>202010</enddate><creator>van der Hoeven, Joris</creator><creator>Lecerf, Grégoire</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-2244-1897</orcidid></search><sort><creationdate>202010</creationdate><title>Directed evaluation</title><author>van der Hoeven, Joris ; Lecerf, Grégoire</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c374t-255d1ffc6ec2a22e93bec488b0f7461faa99b75acc978147ee4925e1c464e9ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Accelerated tower</topic><topic>Algebraic tower</topic><topic>Complexity</topic><topic>Computer Science</topic><topic>Directed evaluation</topic><topic>Dynamic evaluation</topic><topic>Mathematical Software</topic><topic>Triangular set</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van der Hoeven, Joris</creatorcontrib><creatorcontrib>Lecerf, Grégoire</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Journal of Complexity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van der Hoeven, Joris</au><au>Lecerf, Grégoire</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Directed evaluation</atitle><jtitle>Journal of Complexity</jtitle><date>2020-10</date><risdate>2020</risdate><volume>60</volume><spage>101498</spage><pages>101498-</pages><artnum>101498</artnum><issn>0885-064X</issn><eissn>1090-2708</eissn><abstract>Let K be a fixed effective field. The most straightforward approach to compute with an element in the algebraic closure of K is to compute modulo its minimal polynomial. The determination of a minimal polynomial from an arbitrary annihilator requires an algorithm for polynomial factorization over K. Unfortunately, such algorithms do not exist over generic effective fields. They do exist over fields that are explicitly generated over their prime sub-field, but they are often expensive. The dynamic evaluation paradigm, introduced by Duval and collaborators in the eighties, offers an alternative algorithmic solution for computations in the algebraic closure of K. This approach does not require an algorithm for polynomial factorization, but it still suffers from a non-trivial overhead due to suboptimal recomputations. For the first time, we design another paradigm, called directed evaluation, which combines the conceptual advantages of dynamic evaluation with a good worst case complexity bound.</abstract><pub>Elsevier Inc</pub><doi>10.1016/j.jco.2020.101498</doi><orcidid>https://orcid.org/0000-0003-2244-1897</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0885-064X
ispartof Journal of Complexity, 2020-10, Vol.60, p.101498, Article 101498
issn 0885-064X
1090-2708
language eng
recordid cdi_hal_primary_oai_HAL_hal_01966428v2
source ScienceDirect Journals (5 years ago - present); EZB-FREE-00999 freely available EZB journals
subjects Accelerated tower
Algebraic tower
Complexity
Computer Science
Directed evaluation
Dynamic evaluation
Mathematical Software
Triangular set
title Directed evaluation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T01%3A51%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Directed%20evaluation&rft.jtitle=Journal%20of%20Complexity&rft.au=van%20der%20Hoeven,%20Joris&rft.date=2020-10&rft.volume=60&rft.spage=101498&rft.pages=101498-&rft.artnum=101498&rft.issn=0885-064X&rft.eissn=1090-2708&rft_id=info:doi/10.1016/j.jco.2020.101498&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01966428v2%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0885064X20300418&rfr_iscdi=true