Two guaranteed equilibrated error estimators for Harmonic formulations in eddy current problems

In this paper a guaranteed equilibrated error estimator is developed for the 3D harmonic magnetodynamic problem of Maxwell’s system. This system is recasted in the classical A−φ potential formulation and solved by the Finite Element method. The error estimator is built starting from the A−φ numerica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & mathematics with applications (1987) 2019-03, Vol.77 (6), p.1549-1562
Hauptverfasser: Creusé, E., Le Menach, Y., Nicaise, S., Piriou, F., Tittarelli, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper a guaranteed equilibrated error estimator is developed for the 3D harmonic magnetodynamic problem of Maxwell’s system. This system is recasted in the classical A−φ potential formulation and solved by the Finite Element method. The error estimator is built starting from the A−φ numerical solution by a local flux reconstruction technique. Its equivalence with the error in the energy norm is established. A comparison of this estimator with an equilibrated error estimator already developed through a complementary problem points out the advantages and drawbacks of these two estimators. In particular, an analytical benchmark test illustrates the obtained theoretical results and a physical benchmark test shows the efficiency of these two estimators.
ISSN:0898-1221
1873-7668
DOI:10.1016/j.camwa.2018.08.046