Critical behavior, magnetic and magnetocaloric properties of melt-spun Ni50Mn35Sn15 ribbons
Microstructure, structural and magnetic phase transitions of the melt spun Ni50Mn35Sn15 ribbons have been examined by means of scanning electron microscopy, X-ray diffraction, differential scanning calorimetry and magnetic measurements. The melt spun ribbons exhibit a single phase cubic L21 austenit...
Gespeichert in:
Veröffentlicht in: | Journal of alloys and compounds 2018-02, Vol.735, p.1662-1672 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1672 |
---|---|
container_issue | |
container_start_page | 1662 |
container_title | Journal of alloys and compounds |
container_volume | 735 |
creator | Dadda, K. Alleg, S. Souilah, S. Suňol, J.J. Dhahri, E. Bessais, L. Hlil, E.K. |
description | Microstructure, structural and magnetic phase transitions of the melt spun Ni50Mn35Sn15 ribbons have been examined by means of scanning electron microscopy, X-ray diffraction, differential scanning calorimetry and magnetic measurements. The melt spun ribbons exhibit a single phase cubic L21 austenite structure at room temperature with a space group Fm−3m, and lattice parameter a = 5.956 Å. The DSC results reveal the first order reverse and forward martensitic transition (Ms = 147.4 K, Mf = 133.7 K, As = 155 K and Af = 171 K) with a thermal hysteresis of about 21.3 K around the martensitic transition between heating and cooling. The thermomagnetic measurements show that the melt spun ribbons undergo a second order magnetic transition at a Curie temperature TC = 310 K and a first order martensitic transition at TM = 160 K. The critical behavior associated with the magnetic phase transition has been investigated through the isothermal magnetization measurements around TC. The critical exponents have been estimated by several methods such as the modified Arrott plots, Kouvel-Fisher method and critical isothermal analysis. The critical exponents values β=0.456, γ=0.88 and δ=2.929 are close to those predicted from the mean field model revealing a dominated long-range order of magnetic interactions. For an applied magnetic field of 5 T, the maximum magnetic entropy change (ΔSMmax) and the relative cooling power (RCP) values around TC are of about 2.105 J/kg.K and 132.5 J/kg, respectively. The melt-spun Ni50Mn35Sn15 alloy is a good candidate for magnetic refrigeration near room temperature.
[Display omitted]
•The Ni50Mn35Sn15 ribbons have been prepared by melt spinning.•The Heusler alloy exhibits a single phase cubic L21 austenite structure.•The second order magnetic transition occurs at TC = 310 K.•The critical exponent's values are close to those of the mean field model.•The magnetocaloric effect is studied and the ΔSMmax and RCP are determined. |
doi_str_mv | 10.1016/j.jallcom.2017.11.277 |
format | Article |
fullrecord | <record><control><sourceid>elsevier_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01953129v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925838817340598</els_id><sourcerecordid>S0925838817340598</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-80133a7f1992eba57e45e4c74330d5bab9e9db7661b2430df03e9e116e4d38d53</originalsourceid><addsrcrecordid>eNqFkE9LxDAUxIMouP75CEKvgq15TdM0J1kWdYVVD-rJQ0jaVzel25SkLvjtzbKLV0-PN8wMzI-QK6AZUChvu6zTfV-7TZZTEBlAlgtxRGZQCZYWZSmPyYzKnKcVq6pTchZCRykFyWBGPhfeTrbWfWJwrbfW-Ztko78GjGKih-bwuOhwPkqjdyP6yWJIXJtssJ_SMH4PyYvl9Hlg_G0AnnhrjBvCBTlpdR_w8nDPycfD_ftima5eH58W81Vas4JNaUWBMS1akDJHo7nAgmNRi4Ix2nCjjUTZGFGWYPIiSi1lKBGgxKJhVcPZObne9651r0ZvN9r_KKetWs5XaqfFrZxBLrcQvXzvrb0LwWP7FwCqdjRVpw401Y6mAlCRZszd7XMYh2wtehVqi0ONjfVYT6px9p-GX_IUf-g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Critical behavior, magnetic and magnetocaloric properties of melt-spun Ni50Mn35Sn15 ribbons</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Dadda, K. ; Alleg, S. ; Souilah, S. ; Suňol, J.J. ; Dhahri, E. ; Bessais, L. ; Hlil, E.K.</creator><creatorcontrib>Dadda, K. ; Alleg, S. ; Souilah, S. ; Suňol, J.J. ; Dhahri, E. ; Bessais, L. ; Hlil, E.K.</creatorcontrib><description>Microstructure, structural and magnetic phase transitions of the melt spun Ni50Mn35Sn15 ribbons have been examined by means of scanning electron microscopy, X-ray diffraction, differential scanning calorimetry and magnetic measurements. The melt spun ribbons exhibit a single phase cubic L21 austenite structure at room temperature with a space group Fm−3m, and lattice parameter a = 5.956 Å. The DSC results reveal the first order reverse and forward martensitic transition (Ms = 147.4 K, Mf = 133.7 K, As = 155 K and Af = 171 K) with a thermal hysteresis of about 21.3 K around the martensitic transition between heating and cooling. The thermomagnetic measurements show that the melt spun ribbons undergo a second order magnetic transition at a Curie temperature TC = 310 K and a first order martensitic transition at TM = 160 K. The critical behavior associated with the magnetic phase transition has been investigated through the isothermal magnetization measurements around TC. The critical exponents have been estimated by several methods such as the modified Arrott plots, Kouvel-Fisher method and critical isothermal analysis. The critical exponents values β=0.456, γ=0.88 and δ=2.929 are close to those predicted from the mean field model revealing a dominated long-range order of magnetic interactions. For an applied magnetic field of 5 T, the maximum magnetic entropy change (ΔSMmax) and the relative cooling power (RCP) values around TC are of about 2.105 J/kg.K and 132.5 J/kg, respectively. The melt-spun Ni50Mn35Sn15 alloy is a good candidate for magnetic refrigeration near room temperature.
[Display omitted]
•The Ni50Mn35Sn15 ribbons have been prepared by melt spinning.•The Heusler alloy exhibits a single phase cubic L21 austenite structure.•The second order magnetic transition occurs at TC = 310 K.•The critical exponent's values are close to those of the mean field model.•The magnetocaloric effect is studied and the ΔSMmax and RCP are determined.</description><identifier>ISSN: 0925-8388</identifier><identifier>EISSN: 1873-4669</identifier><identifier>DOI: 10.1016/j.jallcom.2017.11.277</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Condensed Matter ; Critical behavior ; Magnetic transition ; Magnetocaloric effect ; Martensitic transformation ; Materials Science ; Ni-Mn-Sn ribbons ; Physics</subject><ispartof>Journal of alloys and compounds, 2018-02, Vol.735, p.1662-1672</ispartof><rights>2017 Elsevier B.V.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-80133a7f1992eba57e45e4c74330d5bab9e9db7661b2430df03e9e116e4d38d53</citedby><cites>FETCH-LOGICAL-c343t-80133a7f1992eba57e45e4c74330d5bab9e9db7661b2430df03e9e116e4d38d53</cites><orcidid>0000-0002-4810-770X ; 0000-0001-9262-3819 ; 0000-0002-6919-8778 ; 0000-0001-7236-1604</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0925838817340598$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01953129$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Dadda, K.</creatorcontrib><creatorcontrib>Alleg, S.</creatorcontrib><creatorcontrib>Souilah, S.</creatorcontrib><creatorcontrib>Suňol, J.J.</creatorcontrib><creatorcontrib>Dhahri, E.</creatorcontrib><creatorcontrib>Bessais, L.</creatorcontrib><creatorcontrib>Hlil, E.K.</creatorcontrib><title>Critical behavior, magnetic and magnetocaloric properties of melt-spun Ni50Mn35Sn15 ribbons</title><title>Journal of alloys and compounds</title><description>Microstructure, structural and magnetic phase transitions of the melt spun Ni50Mn35Sn15 ribbons have been examined by means of scanning electron microscopy, X-ray diffraction, differential scanning calorimetry and magnetic measurements. The melt spun ribbons exhibit a single phase cubic L21 austenite structure at room temperature with a space group Fm−3m, and lattice parameter a = 5.956 Å. The DSC results reveal the first order reverse and forward martensitic transition (Ms = 147.4 K, Mf = 133.7 K, As = 155 K and Af = 171 K) with a thermal hysteresis of about 21.3 K around the martensitic transition between heating and cooling. The thermomagnetic measurements show that the melt spun ribbons undergo a second order magnetic transition at a Curie temperature TC = 310 K and a first order martensitic transition at TM = 160 K. The critical behavior associated with the magnetic phase transition has been investigated through the isothermal magnetization measurements around TC. The critical exponents have been estimated by several methods such as the modified Arrott plots, Kouvel-Fisher method and critical isothermal analysis. The critical exponents values β=0.456, γ=0.88 and δ=2.929 are close to those predicted from the mean field model revealing a dominated long-range order of magnetic interactions. For an applied magnetic field of 5 T, the maximum magnetic entropy change (ΔSMmax) and the relative cooling power (RCP) values around TC are of about 2.105 J/kg.K and 132.5 J/kg, respectively. The melt-spun Ni50Mn35Sn15 alloy is a good candidate for magnetic refrigeration near room temperature.
[Display omitted]
•The Ni50Mn35Sn15 ribbons have been prepared by melt spinning.•The Heusler alloy exhibits a single phase cubic L21 austenite structure.•The second order magnetic transition occurs at TC = 310 K.•The critical exponent's values are close to those of the mean field model.•The magnetocaloric effect is studied and the ΔSMmax and RCP are determined.</description><subject>Condensed Matter</subject><subject>Critical behavior</subject><subject>Magnetic transition</subject><subject>Magnetocaloric effect</subject><subject>Martensitic transformation</subject><subject>Materials Science</subject><subject>Ni-Mn-Sn ribbons</subject><subject>Physics</subject><issn>0925-8388</issn><issn>1873-4669</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LxDAUxIMouP75CEKvgq15TdM0J1kWdYVVD-rJQ0jaVzel25SkLvjtzbKLV0-PN8wMzI-QK6AZUChvu6zTfV-7TZZTEBlAlgtxRGZQCZYWZSmPyYzKnKcVq6pTchZCRykFyWBGPhfeTrbWfWJwrbfW-Ztko78GjGKih-bwuOhwPkqjdyP6yWJIXJtssJ_SMH4PyYvl9Hlg_G0AnnhrjBvCBTlpdR_w8nDPycfD_ftima5eH58W81Vas4JNaUWBMS1akDJHo7nAgmNRi4Ix2nCjjUTZGFGWYPIiSi1lKBGgxKJhVcPZObne9651r0ZvN9r_KKetWs5XaqfFrZxBLrcQvXzvrb0LwWP7FwCqdjRVpw401Y6mAlCRZszd7XMYh2wtehVqi0ONjfVYT6px9p-GX_IUf-g</recordid><startdate>20180225</startdate><enddate>20180225</enddate><creator>Dadda, K.</creator><creator>Alleg, S.</creator><creator>Souilah, S.</creator><creator>Suňol, J.J.</creator><creator>Dhahri, E.</creator><creator>Bessais, L.</creator><creator>Hlil, E.K.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-4810-770X</orcidid><orcidid>https://orcid.org/0000-0001-9262-3819</orcidid><orcidid>https://orcid.org/0000-0002-6919-8778</orcidid><orcidid>https://orcid.org/0000-0001-7236-1604</orcidid></search><sort><creationdate>20180225</creationdate><title>Critical behavior, magnetic and magnetocaloric properties of melt-spun Ni50Mn35Sn15 ribbons</title><author>Dadda, K. ; Alleg, S. ; Souilah, S. ; Suňol, J.J. ; Dhahri, E. ; Bessais, L. ; Hlil, E.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-80133a7f1992eba57e45e4c74330d5bab9e9db7661b2430df03e9e116e4d38d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Condensed Matter</topic><topic>Critical behavior</topic><topic>Magnetic transition</topic><topic>Magnetocaloric effect</topic><topic>Martensitic transformation</topic><topic>Materials Science</topic><topic>Ni-Mn-Sn ribbons</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dadda, K.</creatorcontrib><creatorcontrib>Alleg, S.</creatorcontrib><creatorcontrib>Souilah, S.</creatorcontrib><creatorcontrib>Suňol, J.J.</creatorcontrib><creatorcontrib>Dhahri, E.</creatorcontrib><creatorcontrib>Bessais, L.</creatorcontrib><creatorcontrib>Hlil, E.K.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of alloys and compounds</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dadda, K.</au><au>Alleg, S.</au><au>Souilah, S.</au><au>Suňol, J.J.</au><au>Dhahri, E.</au><au>Bessais, L.</au><au>Hlil, E.K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Critical behavior, magnetic and magnetocaloric properties of melt-spun Ni50Mn35Sn15 ribbons</atitle><jtitle>Journal of alloys and compounds</jtitle><date>2018-02-25</date><risdate>2018</risdate><volume>735</volume><spage>1662</spage><epage>1672</epage><pages>1662-1672</pages><issn>0925-8388</issn><eissn>1873-4669</eissn><abstract>Microstructure, structural and magnetic phase transitions of the melt spun Ni50Mn35Sn15 ribbons have been examined by means of scanning electron microscopy, X-ray diffraction, differential scanning calorimetry and magnetic measurements. The melt spun ribbons exhibit a single phase cubic L21 austenite structure at room temperature with a space group Fm−3m, and lattice parameter a = 5.956 Å. The DSC results reveal the first order reverse and forward martensitic transition (Ms = 147.4 K, Mf = 133.7 K, As = 155 K and Af = 171 K) with a thermal hysteresis of about 21.3 K around the martensitic transition between heating and cooling. The thermomagnetic measurements show that the melt spun ribbons undergo a second order magnetic transition at a Curie temperature TC = 310 K and a first order martensitic transition at TM = 160 K. The critical behavior associated with the magnetic phase transition has been investigated through the isothermal magnetization measurements around TC. The critical exponents have been estimated by several methods such as the modified Arrott plots, Kouvel-Fisher method and critical isothermal analysis. The critical exponents values β=0.456, γ=0.88 and δ=2.929 are close to those predicted from the mean field model revealing a dominated long-range order of magnetic interactions. For an applied magnetic field of 5 T, the maximum magnetic entropy change (ΔSMmax) and the relative cooling power (RCP) values around TC are of about 2.105 J/kg.K and 132.5 J/kg, respectively. The melt-spun Ni50Mn35Sn15 alloy is a good candidate for magnetic refrigeration near room temperature.
[Display omitted]
•The Ni50Mn35Sn15 ribbons have been prepared by melt spinning.•The Heusler alloy exhibits a single phase cubic L21 austenite structure.•The second order magnetic transition occurs at TC = 310 K.•The critical exponent's values are close to those of the mean field model.•The magnetocaloric effect is studied and the ΔSMmax and RCP are determined.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.jallcom.2017.11.277</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-4810-770X</orcidid><orcidid>https://orcid.org/0000-0001-9262-3819</orcidid><orcidid>https://orcid.org/0000-0002-6919-8778</orcidid><orcidid>https://orcid.org/0000-0001-7236-1604</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-8388 |
ispartof | Journal of alloys and compounds, 2018-02, Vol.735, p.1662-1672 |
issn | 0925-8388 1873-4669 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01953129v1 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Condensed Matter Critical behavior Magnetic transition Magnetocaloric effect Martensitic transformation Materials Science Ni-Mn-Sn ribbons Physics |
title | Critical behavior, magnetic and magnetocaloric properties of melt-spun Ni50Mn35Sn15 ribbons |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T18%3A13%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Critical%20behavior,%20magnetic%20and%20magnetocaloric%20properties%20of%20melt-spun%20Ni50Mn35Sn15%20ribbons&rft.jtitle=Journal%20of%20alloys%20and%20compounds&rft.au=Dadda,%20K.&rft.date=2018-02-25&rft.volume=735&rft.spage=1662&rft.epage=1672&rft.pages=1662-1672&rft.issn=0925-8388&rft.eissn=1873-4669&rft_id=info:doi/10.1016/j.jallcom.2017.11.277&rft_dat=%3Celsevier_hal_p%3ES0925838817340598%3C/elsevier_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S0925838817340598&rfr_iscdi=true |