Optimization of bead milling parameters for the cell disruption of microalgae: Process modeling and application to Porphyridium cruentum and Nannochloropsis oculata

•Continuous bead milling disruption was tested for two valuable microalgal strains.•Residence Time Distribution in the grinding chamber corresponded to a 2-CSTR model.•Hydrodynamics was taken into account for first order kinetics disruption modeling.•Stress modeling was successfully adapted to micro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioresource technology 2015-11, Vol.196, p.339-346
Hauptverfasser: Montalescot, V., Rinaldi, T., Touchard, R., Jubeau, S., Frappart, M., Jaouen, P., Bourseau, P., Marchal, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 346
container_issue
container_start_page 339
container_title Bioresource technology
container_volume 196
creator Montalescot, V.
Rinaldi, T.
Touchard, R.
Jubeau, S.
Frappart, M.
Jaouen, P.
Bourseau, P.
Marchal, L.
description •Continuous bead milling disruption was tested for two valuable microalgal strains.•Residence Time Distribution in the grinding chamber corresponded to a 2-CSTR model.•Hydrodynamics was taken into account for first order kinetics disruption modeling.•Stress modeling was successfully adapted to microalgae.•N. oculata was more resistant regarding pressure and bead milling than P. cruentum. A study of cell disruption by bead milling for two microalgae, Nannochloropsis oculata and Porphyridium cruentum, was performed. Strains robustness was quantified by high-pressure disruption assays. The hydrodynamics in the bead mill grinding chamber was studied by Residence Time Distribution modeling. Operating parameters effects were analyzed and modeled in terms of stress intensities and stress number. RTD corresponded to a 2 CSTR in series model. First order kinetics cell disruption was modeled in consequence. Continuous bead milling was efficient for both strains disruption. SI–SN modeling was successfully adapted to microalgae. As predicted by high pressure assays, N. oculata was more resistant than P. cruentum. The critical stress intensity was twice more important for N. oculata than for P. cruentum. SI–SN modeling allows the determination of operating parameters minimizing energy consumption and gives a scalable approach to develop and optimize microalgal disruption by bead milling.
doi_str_mv 10.1016/j.biortech.2015.07.075
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01935770v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960852415010378</els_id><sourcerecordid>1710984403</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-1a4a16a7bcd4e3988fee6c2a3ad6038894ef028d41c1b40fd52880c46a55a8c3</originalsourceid><addsrcrecordid>eNqFkc1u1TAQhS0EopfCK1RewiIXO78OK6oKKNIV7aJ7a2JPGl85cbCdSu3z8KA4pLdbpJFsjb4zRzqHkAvO9pzx-vNx3xnnI6phnzNe7VmTpnpFdlw0RZa3Tf2a7Fhbs0xUeXlG3oVwZIwVvMnfkrO8zqui5WJH_tzM0YzmCaJxE3U97RA0HY21ZrqnM3gYMaIPtHeexgGpQmupNsEv80kyGuUd2HvAL_TWO4Uh0NFp_HcCJk1hnq1Rm0V09Nb5eXj0RptlpMovOMX0WcFfME1ODdZ5NwcTqFOLhQjvyZsebMAPz-85ufv-7e7qOjvc_Ph5dXnIVFmLmHEogdfQdEqXWLRC9Ii1yqEAXbNCiLbEnuVCl1zxrmS9rnIhWNJCVYFQxTn5tJ0dwMrZmxH8o3Rg5PXlQa47xtuiahr2wBP7cWNn734vGKIcTVizgQndEiRvOGtFWbIiofWGppRC8Ni_3OZMrmXKozyVKdcyJWvSVEl48eyxdCPqF9mpvQR83QBMoTwY9DIog5NCbTyqKLUz__P4C4atuBE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1710984403</pqid></control><display><type>article</type><title>Optimization of bead milling parameters for the cell disruption of microalgae: Process modeling and application to Porphyridium cruentum and Nannochloropsis oculata</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Montalescot, V. ; Rinaldi, T. ; Touchard, R. ; Jubeau, S. ; Frappart, M. ; Jaouen, P. ; Bourseau, P. ; Marchal, L.</creator><creatorcontrib>Montalescot, V. ; Rinaldi, T. ; Touchard, R. ; Jubeau, S. ; Frappart, M. ; Jaouen, P. ; Bourseau, P. ; Marchal, L.</creatorcontrib><description>•Continuous bead milling disruption was tested for two valuable microalgal strains.•Residence Time Distribution in the grinding chamber corresponded to a 2-CSTR model.•Hydrodynamics was taken into account for first order kinetics disruption modeling.•Stress modeling was successfully adapted to microalgae.•N. oculata was more resistant regarding pressure and bead milling than P. cruentum. A study of cell disruption by bead milling for two microalgae, Nannochloropsis oculata and Porphyridium cruentum, was performed. Strains robustness was quantified by high-pressure disruption assays. The hydrodynamics in the bead mill grinding chamber was studied by Residence Time Distribution modeling. Operating parameters effects were analyzed and modeled in terms of stress intensities and stress number. RTD corresponded to a 2 CSTR in series model. First order kinetics cell disruption was modeled in consequence. Continuous bead milling was efficient for both strains disruption. SI–SN modeling was successfully adapted to microalgae. As predicted by high pressure assays, N. oculata was more resistant than P. cruentum. The critical stress intensity was twice more important for N. oculata than for P. cruentum. SI–SN modeling allows the determination of operating parameters minimizing energy consumption and gives a scalable approach to develop and optimize microalgal disruption by bead milling.</description><identifier>ISSN: 0960-8524</identifier><identifier>EISSN: 1873-2976</identifier><identifier>DOI: 10.1016/j.biortech.2015.07.075</identifier><identifier>PMID: 26253918</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Bead mill ; Biomass ; Biotechnology - methods ; Cell disruption ; Chemical and Process Engineering ; Engineering Sciences ; Hydrodynamics ; Microalgae - chemistry ; Microalgae - cytology ; Models, Theoretical ; Nannochloropsis oculata ; Porphyridium - chemistry ; Porphyridium - cytology ; Porphyridium cruentum ; Pressure ; Stramenopiles - chemistry ; Stramenopiles - cytology ; Stress model</subject><ispartof>Bioresource technology, 2015-11, Vol.196, p.339-346</ispartof><rights>2015 Elsevier Ltd</rights><rights>Copyright © 2015 Elsevier Ltd. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-1a4a16a7bcd4e3988fee6c2a3ad6038894ef028d41c1b40fd52880c46a55a8c3</citedby><cites>FETCH-LOGICAL-c468t-1a4a16a7bcd4e3988fee6c2a3ad6038894ef028d41c1b40fd52880c46a55a8c3</cites><orcidid>0000-0003-3828-1867 ; 0000-0003-0635-2763</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0960852415010378$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26253918$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01935770$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Montalescot, V.</creatorcontrib><creatorcontrib>Rinaldi, T.</creatorcontrib><creatorcontrib>Touchard, R.</creatorcontrib><creatorcontrib>Jubeau, S.</creatorcontrib><creatorcontrib>Frappart, M.</creatorcontrib><creatorcontrib>Jaouen, P.</creatorcontrib><creatorcontrib>Bourseau, P.</creatorcontrib><creatorcontrib>Marchal, L.</creatorcontrib><title>Optimization of bead milling parameters for the cell disruption of microalgae: Process modeling and application to Porphyridium cruentum and Nannochloropsis oculata</title><title>Bioresource technology</title><addtitle>Bioresour Technol</addtitle><description>•Continuous bead milling disruption was tested for two valuable microalgal strains.•Residence Time Distribution in the grinding chamber corresponded to a 2-CSTR model.•Hydrodynamics was taken into account for first order kinetics disruption modeling.•Stress modeling was successfully adapted to microalgae.•N. oculata was more resistant regarding pressure and bead milling than P. cruentum. A study of cell disruption by bead milling for two microalgae, Nannochloropsis oculata and Porphyridium cruentum, was performed. Strains robustness was quantified by high-pressure disruption assays. The hydrodynamics in the bead mill grinding chamber was studied by Residence Time Distribution modeling. Operating parameters effects were analyzed and modeled in terms of stress intensities and stress number. RTD corresponded to a 2 CSTR in series model. First order kinetics cell disruption was modeled in consequence. Continuous bead milling was efficient for both strains disruption. SI–SN modeling was successfully adapted to microalgae. As predicted by high pressure assays, N. oculata was more resistant than P. cruentum. The critical stress intensity was twice more important for N. oculata than for P. cruentum. SI–SN modeling allows the determination of operating parameters minimizing energy consumption and gives a scalable approach to develop and optimize microalgal disruption by bead milling.</description><subject>Bead mill</subject><subject>Biomass</subject><subject>Biotechnology - methods</subject><subject>Cell disruption</subject><subject>Chemical and Process Engineering</subject><subject>Engineering Sciences</subject><subject>Hydrodynamics</subject><subject>Microalgae - chemistry</subject><subject>Microalgae - cytology</subject><subject>Models, Theoretical</subject><subject>Nannochloropsis oculata</subject><subject>Porphyridium - chemistry</subject><subject>Porphyridium - cytology</subject><subject>Porphyridium cruentum</subject><subject>Pressure</subject><subject>Stramenopiles - chemistry</subject><subject>Stramenopiles - cytology</subject><subject>Stress model</subject><issn>0960-8524</issn><issn>1873-2976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1u1TAQhS0EopfCK1RewiIXO78OK6oKKNIV7aJ7a2JPGl85cbCdSu3z8KA4pLdbpJFsjb4zRzqHkAvO9pzx-vNx3xnnI6phnzNe7VmTpnpFdlw0RZa3Tf2a7Fhbs0xUeXlG3oVwZIwVvMnfkrO8zqui5WJH_tzM0YzmCaJxE3U97RA0HY21ZrqnM3gYMaIPtHeexgGpQmupNsEv80kyGuUd2HvAL_TWO4Uh0NFp_HcCJk1hnq1Rm0V09Nb5eXj0RptlpMovOMX0WcFfME1ODdZ5NwcTqFOLhQjvyZsebMAPz-85ufv-7e7qOjvc_Ph5dXnIVFmLmHEogdfQdEqXWLRC9Ii1yqEAXbNCiLbEnuVCl1zxrmS9rnIhWNJCVYFQxTn5tJ0dwMrZmxH8o3Rg5PXlQa47xtuiahr2wBP7cWNn734vGKIcTVizgQndEiRvOGtFWbIiofWGppRC8Ni_3OZMrmXKozyVKdcyJWvSVEl48eyxdCPqF9mpvQR83QBMoTwY9DIog5NCbTyqKLUz__P4C4atuBE</recordid><startdate>201511</startdate><enddate>201511</enddate><creator>Montalescot, V.</creator><creator>Rinaldi, T.</creator><creator>Touchard, R.</creator><creator>Jubeau, S.</creator><creator>Frappart, M.</creator><creator>Jaouen, P.</creator><creator>Bourseau, P.</creator><creator>Marchal, L.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-3828-1867</orcidid><orcidid>https://orcid.org/0000-0003-0635-2763</orcidid></search><sort><creationdate>201511</creationdate><title>Optimization of bead milling parameters for the cell disruption of microalgae: Process modeling and application to Porphyridium cruentum and Nannochloropsis oculata</title><author>Montalescot, V. ; Rinaldi, T. ; Touchard, R. ; Jubeau, S. ; Frappart, M. ; Jaouen, P. ; Bourseau, P. ; Marchal, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-1a4a16a7bcd4e3988fee6c2a3ad6038894ef028d41c1b40fd52880c46a55a8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Bead mill</topic><topic>Biomass</topic><topic>Biotechnology - methods</topic><topic>Cell disruption</topic><topic>Chemical and Process Engineering</topic><topic>Engineering Sciences</topic><topic>Hydrodynamics</topic><topic>Microalgae - chemistry</topic><topic>Microalgae - cytology</topic><topic>Models, Theoretical</topic><topic>Nannochloropsis oculata</topic><topic>Porphyridium - chemistry</topic><topic>Porphyridium - cytology</topic><topic>Porphyridium cruentum</topic><topic>Pressure</topic><topic>Stramenopiles - chemistry</topic><topic>Stramenopiles - cytology</topic><topic>Stress model</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Montalescot, V.</creatorcontrib><creatorcontrib>Rinaldi, T.</creatorcontrib><creatorcontrib>Touchard, R.</creatorcontrib><creatorcontrib>Jubeau, S.</creatorcontrib><creatorcontrib>Frappart, M.</creatorcontrib><creatorcontrib>Jaouen, P.</creatorcontrib><creatorcontrib>Bourseau, P.</creatorcontrib><creatorcontrib>Marchal, L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Bioresource technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Montalescot, V.</au><au>Rinaldi, T.</au><au>Touchard, R.</au><au>Jubeau, S.</au><au>Frappart, M.</au><au>Jaouen, P.</au><au>Bourseau, P.</au><au>Marchal, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of bead milling parameters for the cell disruption of microalgae: Process modeling and application to Porphyridium cruentum and Nannochloropsis oculata</atitle><jtitle>Bioresource technology</jtitle><addtitle>Bioresour Technol</addtitle><date>2015-11</date><risdate>2015</risdate><volume>196</volume><spage>339</spage><epage>346</epage><pages>339-346</pages><issn>0960-8524</issn><eissn>1873-2976</eissn><abstract>•Continuous bead milling disruption was tested for two valuable microalgal strains.•Residence Time Distribution in the grinding chamber corresponded to a 2-CSTR model.•Hydrodynamics was taken into account for first order kinetics disruption modeling.•Stress modeling was successfully adapted to microalgae.•N. oculata was more resistant regarding pressure and bead milling than P. cruentum. A study of cell disruption by bead milling for two microalgae, Nannochloropsis oculata and Porphyridium cruentum, was performed. Strains robustness was quantified by high-pressure disruption assays. The hydrodynamics in the bead mill grinding chamber was studied by Residence Time Distribution modeling. Operating parameters effects were analyzed and modeled in terms of stress intensities and stress number. RTD corresponded to a 2 CSTR in series model. First order kinetics cell disruption was modeled in consequence. Continuous bead milling was efficient for both strains disruption. SI–SN modeling was successfully adapted to microalgae. As predicted by high pressure assays, N. oculata was more resistant than P. cruentum. The critical stress intensity was twice more important for N. oculata than for P. cruentum. SI–SN modeling allows the determination of operating parameters minimizing energy consumption and gives a scalable approach to develop and optimize microalgal disruption by bead milling.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>26253918</pmid><doi>10.1016/j.biortech.2015.07.075</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3828-1867</orcidid><orcidid>https://orcid.org/0000-0003-0635-2763</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0960-8524
ispartof Bioresource technology, 2015-11, Vol.196, p.339-346
issn 0960-8524
1873-2976
language eng
recordid cdi_hal_primary_oai_HAL_hal_01935770v1
source MEDLINE; Elsevier ScienceDirect Journals
subjects Bead mill
Biomass
Biotechnology - methods
Cell disruption
Chemical and Process Engineering
Engineering Sciences
Hydrodynamics
Microalgae - chemistry
Microalgae - cytology
Models, Theoretical
Nannochloropsis oculata
Porphyridium - chemistry
Porphyridium - cytology
Porphyridium cruentum
Pressure
Stramenopiles - chemistry
Stramenopiles - cytology
Stress model
title Optimization of bead milling parameters for the cell disruption of microalgae: Process modeling and application to Porphyridium cruentum and Nannochloropsis oculata
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T01%3A43%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20bead%20milling%20parameters%20for%20the%20cell%20disruption%20of%20microalgae:%20Process%20modeling%20and%20application%20to%20Porphyridium%20cruentum%20and%20Nannochloropsis%20oculata&rft.jtitle=Bioresource%20technology&rft.au=Montalescot,%20V.&rft.date=2015-11&rft.volume=196&rft.spage=339&rft.epage=346&rft.pages=339-346&rft.issn=0960-8524&rft.eissn=1873-2976&rft_id=info:doi/10.1016/j.biortech.2015.07.075&rft_dat=%3Cproquest_hal_p%3E1710984403%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1710984403&rft_id=info:pmid/26253918&rft_els_id=S0960852415010378&rfr_iscdi=true