Patch Redundancy in Images: A Statistical Testing Framework and Some Applications

In this work we introduce a statistical framework in order to analyze the spatial redundancy in natural images. This notion of spatial redundancy must be defined locally and thus we give some examples of functions (auto-similarity and template similarity) which, given one or two images, computes a s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on imaging sciences 2019-01, Vol.12 (2), p.893-926
Hauptverfasser: De Bortoli, Valentin, Desolneux, Agnès, Galerne, Bruno, Leclaire, Arthur
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work we introduce a statistical framework in order to analyze the spatial redundancy in natural images. This notion of spatial redundancy must be defined locally and thus we give some examples of functions (auto-similarity and template similarity) which, given one or two images, computes a similarity measurement between patches. Two patches are said to be similar if the similarity measurement is small enough. To derive a criterion for taking a decision on the similarity between two patches we present an a contrario model. Namely, two patches are said to be similar if the associated similarity measurement is unlikely to happen in a background model. Choosing Gaussian random fields as background models we derive non-asymptotic expressions for the probability distribution function of similarity measurements. We introduce a fast algorithm in order to assess redundancy in natural images and present applications in denoising, periodicity analysis and texture ranking.
ISSN:1936-4954
1936-4954
DOI:10.1137/18M1228219