Lactobacillus rhamnosus GG increases cyclooxygenase‐2 expression and prostaglandin E2 secretion in colonic myofibroblasts via a MyD88‐dependent mechanism during homeostasis

Prostaglandin E2 (PGE2) plays a critical role in intestinal mucosal tolerance and barrier integrity. Cyclooxygenase‐2 (COX‐2)‐dependent PGE2 production involves mobilisation of arachidonic acid. Lactobacillus rhamnosus GG (LbGG) is one of the most widely used probiotics reported to colonise the colo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cellular microbiology 2018-11, Vol.20 (11), p.e12871-n/a
Hauptverfasser: Uribe, Gabriela, Villéger, Romain, Bressollier, Philippe, Dillard, Rachel N., Worthley, Daniel L., Wang, Timothy C., Powell, Don W., Urdaci, Maria C., Pinchuk, Irina V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 11
container_start_page e12871
container_title Cellular microbiology
container_volume 20
creator Uribe, Gabriela
Villéger, Romain
Bressollier, Philippe
Dillard, Rachel N.
Worthley, Daniel L.
Wang, Timothy C.
Powell, Don W.
Urdaci, Maria C.
Pinchuk, Irina V.
description Prostaglandin E2 (PGE2) plays a critical role in intestinal mucosal tolerance and barrier integrity. Cyclooxygenase‐2 (COX‐2)‐dependent PGE2 production involves mobilisation of arachidonic acid. Lactobacillus rhamnosus GG (LbGG) is one of the most widely used probiotics reported to colonise the colonic mucosa. LbGG contributes to the protection of the small intestine against radiation injury through the repositioning of mucosal COX‐2 expressing cells. However, it is unknown if LbGG modulates PGE2 production in the colonic mucosa under homeostasis and the major cellular elements involved in these processes. Colonic epithelial and CD90+ mesenchymal stromal cells, also known as (myo) fibroblasts (CMFs), are abundant innate immune cells in normal colonic mucosa able to produce PGE2. Herein, we tested the hypothesis that under colonic mucosal homeostasis, LbGG modulates the eicosanoid pathway resulting in increased PGE2 production in both epithelial and stromal cells. Among the five tested human colonic epithelial cell lines, only exposure of Caco‐2 to LbGG for 24 hr led to the mobilisation of arachidonic acid with concomitant increase in the components within the leukotriene and COX‐2‐dependent PGE2 pathways. By contrast, CMFs isolated from the normal human colonic mucosa responded to LbGG with increased expression of COX‐2 and PGE2 in the prostaglandin pathway, but not 5‐LO in the leukotriene pathway. Oral gavage of C57BL/6 mice for 5 days with LbGG (5 × 108 Colony‐Forming Unit (CFU)/dose) increased COX‐2 expression in the colonic mucosa. The majority of cells upregulating COX‐2 protein expression were located in the colonic lamina propria and colocalised with α‐SMA+ cells corresponding to the CMF phenotype. This process was myeloid differentiation factor‐88‐dependent, because silencing of myeloid differentiation factor‐88 expression in CMFs abrogated LbGG‐induced upregulation of COX‐2 in culture and in vivo. Taken together, our data suggest that LbGG increases release of COX‐2‐mediated PGE2, contributing to the maintenance of mucosal homeostasis in the colon and CMFs are among the major contributors to this process.
doi_str_mv 10.1111/cmi.12871
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01931267v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2125018764</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3871-a6868811095d7d894d2b21d03c8c9830cee02ec23edfbe0723ca7ebbc725d4bc3</originalsourceid><addsrcrecordid>eNp1kc1uEzEUhUcIREthwQsgS2xgkdb2_NizrEJJK6ViA2vLY98krjx28J1pOzsegUfhmXgSnKYNEhLe-F7787F9TlG8ZfSU5XFmenfKuBTsWXHMqobPasn580PNqqPiFeINpawRjL0sjnjbctoycVz8WmozxE4b5_2IJG10HyLmarEgLpgEGgGJmYyP8X5aQ8j97x8_OYH7bQJEFwPRwZJtijjotc-1C-SCE4R8eNht595EH4MzpJ_iynUpdl7jgOTWaaLJ9fRJyqxpYQvBQhhID2ajg8Oe2DG5sCab2MNOHx2-Ll6stEd48zifFN8-X3ydX86WXxZX8_PlzJTZiJluZCMlY7StrbCyrSzvOLO0NNK0sqQGgHIwvAS76oAKXhotoOuM4LWtOlOeFB_3uhvt1Ta5XqdJRe3U5flS7dYoa0vGG3HLMvthz2YXvo-Ag-odGvDZDYgjKk5rUVVlWzUZff8PehPHFPJPFGe8pkyKpvp7ucm2YoLV4QWMql3kKkeuHiLP7LtHxbHrwR7Ip4wzcLYH7pyH6f9Kan59tZf8A-gmuls</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2125018764</pqid></control><display><type>article</type><title>Lactobacillus rhamnosus GG increases cyclooxygenase‐2 expression and prostaglandin E2 secretion in colonic myofibroblasts via a MyD88‐dependent mechanism during homeostasis</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Free Content</source><source>Wiley Online Library All Journals</source><source>Alma/SFX Local Collection</source><creator>Uribe, Gabriela ; Villéger, Romain ; Bressollier, Philippe ; Dillard, Rachel N. ; Worthley, Daniel L. ; Wang, Timothy C. ; Powell, Don W. ; Urdaci, Maria C. ; Pinchuk, Irina V.</creator><creatorcontrib>Uribe, Gabriela ; Villéger, Romain ; Bressollier, Philippe ; Dillard, Rachel N. ; Worthley, Daniel L. ; Wang, Timothy C. ; Powell, Don W. ; Urdaci, Maria C. ; Pinchuk, Irina V.</creatorcontrib><description>Prostaglandin E2 (PGE2) plays a critical role in intestinal mucosal tolerance and barrier integrity. Cyclooxygenase‐2 (COX‐2)‐dependent PGE2 production involves mobilisation of arachidonic acid. Lactobacillus rhamnosus GG (LbGG) is one of the most widely used probiotics reported to colonise the colonic mucosa. LbGG contributes to the protection of the small intestine against radiation injury through the repositioning of mucosal COX‐2 expressing cells. However, it is unknown if LbGG modulates PGE2 production in the colonic mucosa under homeostasis and the major cellular elements involved in these processes. Colonic epithelial and CD90+ mesenchymal stromal cells, also known as (myo) fibroblasts (CMFs), are abundant innate immune cells in normal colonic mucosa able to produce PGE2. Herein, we tested the hypothesis that under colonic mucosal homeostasis, LbGG modulates the eicosanoid pathway resulting in increased PGE2 production in both epithelial and stromal cells. Among the five tested human colonic epithelial cell lines, only exposure of Caco‐2 to LbGG for 24 hr led to the mobilisation of arachidonic acid with concomitant increase in the components within the leukotriene and COX‐2‐dependent PGE2 pathways. By contrast, CMFs isolated from the normal human colonic mucosa responded to LbGG with increased expression of COX‐2 and PGE2 in the prostaglandin pathway, but not 5‐LO in the leukotriene pathway. Oral gavage of C57BL/6 mice for 5 days with LbGG (5 × 108 Colony‐Forming Unit (CFU)/dose) increased COX‐2 expression in the colonic mucosa. The majority of cells upregulating COX‐2 protein expression were located in the colonic lamina propria and colocalised with α‐SMA+ cells corresponding to the CMF phenotype. This process was myeloid differentiation factor‐88‐dependent, because silencing of myeloid differentiation factor‐88 expression in CMFs abrogated LbGG‐induced upregulation of COX‐2 in culture and in vivo. Taken together, our data suggest that LbGG increases release of COX‐2‐mediated PGE2, contributing to the maintenance of mucosal homeostasis in the colon and CMFs are among the major contributors to this process.</description><identifier>ISSN: 1462-5814</identifier><identifier>EISSN: 1462-5822</identifier><identifier>DOI: 10.1111/cmi.12871</identifier><identifier>PMID: 29920917</identifier><language>eng</language><publisher>England: Hindawi Limited</publisher><subject>Administration, Oral ; Animals ; Arachidonate 5-Lipoxygenase - metabolism ; Arachidonic acid ; Arachidonic Acid - metabolism ; Bacteriology ; Biochemistry ; Biochemistry, Molecular Biology ; Caco-2 Cells ; CD90 antigen ; Cell Behavior ; Cell culture ; Cell lines ; Cellular Biology ; Cellular manufacture ; Colon ; Colon - cytology ; Colon - microbiology ; COX‐2 ; Cyclooxygenase 2 - metabolism ; Differentiation ; Dinoprostone - metabolism ; Epithelial cells ; Fibroblasts ; Food and Nutrition ; Homeostasis ; Humans ; Immune system ; Immunological tolerance ; Immunology ; Innate immunity ; lactic acid bacteria ; Lactobacillus rhamnosus ; Lamina propria ; Life Sciences ; mechanism of action ; Mesenchyme ; metabolic processes ; Mice, Inbred C57BL ; Mice, Transgenic ; microbial cell interaction ; Microbiology and Parasitology ; Molecular biology ; Mucosa ; MyD88 protein ; Myeloid Differentiation Factor 88 - genetics ; Myeloid Differentiation Factor 88 - metabolism ; Myofibroblasts - metabolism ; Myofibroblasts - microbiology ; Phenotypes ; Probiotics ; Probiotics - administration &amp; dosage ; Probiotics - pharmacology ; Prostaglandin E2 ; Prostaglandin endoperoxide synthase ; Proteins ; Radiation injuries ; Rodents ; Small intestine ; Stromal cells ; Subcellular Processes</subject><ispartof>Cellular microbiology, 2018-11, Vol.20 (11), p.e12871-n/a</ispartof><rights>2018 John Wiley &amp; Sons Ltd</rights><rights>2018 John Wiley &amp; Sons Ltd.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3871-a6868811095d7d894d2b21d03c8c9830cee02ec23edfbe0723ca7ebbc725d4bc3</citedby><cites>FETCH-LOGICAL-c3871-a6868811095d7d894d2b21d03c8c9830cee02ec23edfbe0723ca7ebbc725d4bc3</cites><orcidid>0000-0002-9478-4293 ; 0000-0003-2815-045X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fcmi.12871$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fcmi.12871$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1416,1432,27923,27924,45573,45574,46408,46832</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29920917$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://uca.hal.science/hal-01931267$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Uribe, Gabriela</creatorcontrib><creatorcontrib>Villéger, Romain</creatorcontrib><creatorcontrib>Bressollier, Philippe</creatorcontrib><creatorcontrib>Dillard, Rachel N.</creatorcontrib><creatorcontrib>Worthley, Daniel L.</creatorcontrib><creatorcontrib>Wang, Timothy C.</creatorcontrib><creatorcontrib>Powell, Don W.</creatorcontrib><creatorcontrib>Urdaci, Maria C.</creatorcontrib><creatorcontrib>Pinchuk, Irina V.</creatorcontrib><title>Lactobacillus rhamnosus GG increases cyclooxygenase‐2 expression and prostaglandin E2 secretion in colonic myofibroblasts via a MyD88‐dependent mechanism during homeostasis</title><title>Cellular microbiology</title><addtitle>Cell Microbiol</addtitle><description>Prostaglandin E2 (PGE2) plays a critical role in intestinal mucosal tolerance and barrier integrity. Cyclooxygenase‐2 (COX‐2)‐dependent PGE2 production involves mobilisation of arachidonic acid. Lactobacillus rhamnosus GG (LbGG) is one of the most widely used probiotics reported to colonise the colonic mucosa. LbGG contributes to the protection of the small intestine against radiation injury through the repositioning of mucosal COX‐2 expressing cells. However, it is unknown if LbGG modulates PGE2 production in the colonic mucosa under homeostasis and the major cellular elements involved in these processes. Colonic epithelial and CD90+ mesenchymal stromal cells, also known as (myo) fibroblasts (CMFs), are abundant innate immune cells in normal colonic mucosa able to produce PGE2. Herein, we tested the hypothesis that under colonic mucosal homeostasis, LbGG modulates the eicosanoid pathway resulting in increased PGE2 production in both epithelial and stromal cells. Among the five tested human colonic epithelial cell lines, only exposure of Caco‐2 to LbGG for 24 hr led to the mobilisation of arachidonic acid with concomitant increase in the components within the leukotriene and COX‐2‐dependent PGE2 pathways. By contrast, CMFs isolated from the normal human colonic mucosa responded to LbGG with increased expression of COX‐2 and PGE2 in the prostaglandin pathway, but not 5‐LO in the leukotriene pathway. Oral gavage of C57BL/6 mice for 5 days with LbGG (5 × 108 Colony‐Forming Unit (CFU)/dose) increased COX‐2 expression in the colonic mucosa. The majority of cells upregulating COX‐2 protein expression were located in the colonic lamina propria and colocalised with α‐SMA+ cells corresponding to the CMF phenotype. This process was myeloid differentiation factor‐88‐dependent, because silencing of myeloid differentiation factor‐88 expression in CMFs abrogated LbGG‐induced upregulation of COX‐2 in culture and in vivo. Taken together, our data suggest that LbGG increases release of COX‐2‐mediated PGE2, contributing to the maintenance of mucosal homeostasis in the colon and CMFs are among the major contributors to this process.</description><subject>Administration, Oral</subject><subject>Animals</subject><subject>Arachidonate 5-Lipoxygenase - metabolism</subject><subject>Arachidonic acid</subject><subject>Arachidonic Acid - metabolism</subject><subject>Bacteriology</subject><subject>Biochemistry</subject><subject>Biochemistry, Molecular Biology</subject><subject>Caco-2 Cells</subject><subject>CD90 antigen</subject><subject>Cell Behavior</subject><subject>Cell culture</subject><subject>Cell lines</subject><subject>Cellular Biology</subject><subject>Cellular manufacture</subject><subject>Colon</subject><subject>Colon - cytology</subject><subject>Colon - microbiology</subject><subject>COX‐2</subject><subject>Cyclooxygenase 2 - metabolism</subject><subject>Differentiation</subject><subject>Dinoprostone - metabolism</subject><subject>Epithelial cells</subject><subject>Fibroblasts</subject><subject>Food and Nutrition</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Immune system</subject><subject>Immunological tolerance</subject><subject>Immunology</subject><subject>Innate immunity</subject><subject>lactic acid bacteria</subject><subject>Lactobacillus rhamnosus</subject><subject>Lamina propria</subject><subject>Life Sciences</subject><subject>mechanism of action</subject><subject>Mesenchyme</subject><subject>metabolic processes</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Transgenic</subject><subject>microbial cell interaction</subject><subject>Microbiology and Parasitology</subject><subject>Molecular biology</subject><subject>Mucosa</subject><subject>MyD88 protein</subject><subject>Myeloid Differentiation Factor 88 - genetics</subject><subject>Myeloid Differentiation Factor 88 - metabolism</subject><subject>Myofibroblasts - metabolism</subject><subject>Myofibroblasts - microbiology</subject><subject>Phenotypes</subject><subject>Probiotics</subject><subject>Probiotics - administration &amp; dosage</subject><subject>Probiotics - pharmacology</subject><subject>Prostaglandin E2</subject><subject>Prostaglandin endoperoxide synthase</subject><subject>Proteins</subject><subject>Radiation injuries</subject><subject>Rodents</subject><subject>Small intestine</subject><subject>Stromal cells</subject><subject>Subcellular Processes</subject><issn>1462-5814</issn><issn>1462-5822</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc1uEzEUhUcIREthwQsgS2xgkdb2_NizrEJJK6ViA2vLY98krjx28J1pOzsegUfhmXgSnKYNEhLe-F7787F9TlG8ZfSU5XFmenfKuBTsWXHMqobPasn580PNqqPiFeINpawRjL0sjnjbctoycVz8WmozxE4b5_2IJG10HyLmarEgLpgEGgGJmYyP8X5aQ8j97x8_OYH7bQJEFwPRwZJtijjotc-1C-SCE4R8eNht595EH4MzpJ_iynUpdl7jgOTWaaLJ9fRJyqxpYQvBQhhID2ajg8Oe2DG5sCab2MNOHx2-Ll6stEd48zifFN8-X3ydX86WXxZX8_PlzJTZiJluZCMlY7StrbCyrSzvOLO0NNK0sqQGgHIwvAS76oAKXhotoOuM4LWtOlOeFB_3uhvt1Ta5XqdJRe3U5flS7dYoa0vGG3HLMvthz2YXvo-Ag-odGvDZDYgjKk5rUVVlWzUZff8PehPHFPJPFGe8pkyKpvp7ucm2YoLV4QWMql3kKkeuHiLP7LtHxbHrwR7Ip4wzcLYH7pyH6f9Kan59tZf8A-gmuls</recordid><startdate>201811</startdate><enddate>201811</enddate><creator>Uribe, Gabriela</creator><creator>Villéger, Romain</creator><creator>Bressollier, Philippe</creator><creator>Dillard, Rachel N.</creator><creator>Worthley, Daniel L.</creator><creator>Wang, Timothy C.</creator><creator>Powell, Don W.</creator><creator>Urdaci, Maria C.</creator><creator>Pinchuk, Irina V.</creator><general>Hindawi Limited</general><general>Wiley</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T7</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-9478-4293</orcidid><orcidid>https://orcid.org/0000-0003-2815-045X</orcidid></search><sort><creationdate>201811</creationdate><title>Lactobacillus rhamnosus GG increases cyclooxygenase‐2 expression and prostaglandin E2 secretion in colonic myofibroblasts via a MyD88‐dependent mechanism during homeostasis</title><author>Uribe, Gabriela ; Villéger, Romain ; Bressollier, Philippe ; Dillard, Rachel N. ; Worthley, Daniel L. ; Wang, Timothy C. ; Powell, Don W. ; Urdaci, Maria C. ; Pinchuk, Irina V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3871-a6868811095d7d894d2b21d03c8c9830cee02ec23edfbe0723ca7ebbc725d4bc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Administration, Oral</topic><topic>Animals</topic><topic>Arachidonate 5-Lipoxygenase - metabolism</topic><topic>Arachidonic acid</topic><topic>Arachidonic Acid - metabolism</topic><topic>Bacteriology</topic><topic>Biochemistry</topic><topic>Biochemistry, Molecular Biology</topic><topic>Caco-2 Cells</topic><topic>CD90 antigen</topic><topic>Cell Behavior</topic><topic>Cell culture</topic><topic>Cell lines</topic><topic>Cellular Biology</topic><topic>Cellular manufacture</topic><topic>Colon</topic><topic>Colon - cytology</topic><topic>Colon - microbiology</topic><topic>COX‐2</topic><topic>Cyclooxygenase 2 - metabolism</topic><topic>Differentiation</topic><topic>Dinoprostone - metabolism</topic><topic>Epithelial cells</topic><topic>Fibroblasts</topic><topic>Food and Nutrition</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Immune system</topic><topic>Immunological tolerance</topic><topic>Immunology</topic><topic>Innate immunity</topic><topic>lactic acid bacteria</topic><topic>Lactobacillus rhamnosus</topic><topic>Lamina propria</topic><topic>Life Sciences</topic><topic>mechanism of action</topic><topic>Mesenchyme</topic><topic>metabolic processes</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Transgenic</topic><topic>microbial cell interaction</topic><topic>Microbiology and Parasitology</topic><topic>Molecular biology</topic><topic>Mucosa</topic><topic>MyD88 protein</topic><topic>Myeloid Differentiation Factor 88 - genetics</topic><topic>Myeloid Differentiation Factor 88 - metabolism</topic><topic>Myofibroblasts - metabolism</topic><topic>Myofibroblasts - microbiology</topic><topic>Phenotypes</topic><topic>Probiotics</topic><topic>Probiotics - administration &amp; dosage</topic><topic>Probiotics - pharmacology</topic><topic>Prostaglandin E2</topic><topic>Prostaglandin endoperoxide synthase</topic><topic>Proteins</topic><topic>Radiation injuries</topic><topic>Rodents</topic><topic>Small intestine</topic><topic>Stromal cells</topic><topic>Subcellular Processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Uribe, Gabriela</creatorcontrib><creatorcontrib>Villéger, Romain</creatorcontrib><creatorcontrib>Bressollier, Philippe</creatorcontrib><creatorcontrib>Dillard, Rachel N.</creatorcontrib><creatorcontrib>Worthley, Daniel L.</creatorcontrib><creatorcontrib>Wang, Timothy C.</creatorcontrib><creatorcontrib>Powell, Don W.</creatorcontrib><creatorcontrib>Urdaci, Maria C.</creatorcontrib><creatorcontrib>Pinchuk, Irina V.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Cellular microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Uribe, Gabriela</au><au>Villéger, Romain</au><au>Bressollier, Philippe</au><au>Dillard, Rachel N.</au><au>Worthley, Daniel L.</au><au>Wang, Timothy C.</au><au>Powell, Don W.</au><au>Urdaci, Maria C.</au><au>Pinchuk, Irina V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lactobacillus rhamnosus GG increases cyclooxygenase‐2 expression and prostaglandin E2 secretion in colonic myofibroblasts via a MyD88‐dependent mechanism during homeostasis</atitle><jtitle>Cellular microbiology</jtitle><addtitle>Cell Microbiol</addtitle><date>2018-11</date><risdate>2018</risdate><volume>20</volume><issue>11</issue><spage>e12871</spage><epage>n/a</epage><pages>e12871-n/a</pages><issn>1462-5814</issn><eissn>1462-5822</eissn><abstract>Prostaglandin E2 (PGE2) plays a critical role in intestinal mucosal tolerance and barrier integrity. Cyclooxygenase‐2 (COX‐2)‐dependent PGE2 production involves mobilisation of arachidonic acid. Lactobacillus rhamnosus GG (LbGG) is one of the most widely used probiotics reported to colonise the colonic mucosa. LbGG contributes to the protection of the small intestine against radiation injury through the repositioning of mucosal COX‐2 expressing cells. However, it is unknown if LbGG modulates PGE2 production in the colonic mucosa under homeostasis and the major cellular elements involved in these processes. Colonic epithelial and CD90+ mesenchymal stromal cells, also known as (myo) fibroblasts (CMFs), are abundant innate immune cells in normal colonic mucosa able to produce PGE2. Herein, we tested the hypothesis that under colonic mucosal homeostasis, LbGG modulates the eicosanoid pathway resulting in increased PGE2 production in both epithelial and stromal cells. Among the five tested human colonic epithelial cell lines, only exposure of Caco‐2 to LbGG for 24 hr led to the mobilisation of arachidonic acid with concomitant increase in the components within the leukotriene and COX‐2‐dependent PGE2 pathways. By contrast, CMFs isolated from the normal human colonic mucosa responded to LbGG with increased expression of COX‐2 and PGE2 in the prostaglandin pathway, but not 5‐LO in the leukotriene pathway. Oral gavage of C57BL/6 mice for 5 days with LbGG (5 × 108 Colony‐Forming Unit (CFU)/dose) increased COX‐2 expression in the colonic mucosa. The majority of cells upregulating COX‐2 protein expression were located in the colonic lamina propria and colocalised with α‐SMA+ cells corresponding to the CMF phenotype. This process was myeloid differentiation factor‐88‐dependent, because silencing of myeloid differentiation factor‐88 expression in CMFs abrogated LbGG‐induced upregulation of COX‐2 in culture and in vivo. Taken together, our data suggest that LbGG increases release of COX‐2‐mediated PGE2, contributing to the maintenance of mucosal homeostasis in the colon and CMFs are among the major contributors to this process.</abstract><cop>England</cop><pub>Hindawi Limited</pub><pmid>29920917</pmid><doi>10.1111/cmi.12871</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9478-4293</orcidid><orcidid>https://orcid.org/0000-0003-2815-045X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1462-5814
ispartof Cellular microbiology, 2018-11, Vol.20 (11), p.e12871-n/a
issn 1462-5814
1462-5822
language eng
recordid cdi_hal_primary_oai_HAL_hal_01931267v1
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Free Content; Wiley Online Library All Journals; Alma/SFX Local Collection
subjects Administration, Oral
Animals
Arachidonate 5-Lipoxygenase - metabolism
Arachidonic acid
Arachidonic Acid - metabolism
Bacteriology
Biochemistry
Biochemistry, Molecular Biology
Caco-2 Cells
CD90 antigen
Cell Behavior
Cell culture
Cell lines
Cellular Biology
Cellular manufacture
Colon
Colon - cytology
Colon - microbiology
COX‐2
Cyclooxygenase 2 - metabolism
Differentiation
Dinoprostone - metabolism
Epithelial cells
Fibroblasts
Food and Nutrition
Homeostasis
Humans
Immune system
Immunological tolerance
Immunology
Innate immunity
lactic acid bacteria
Lactobacillus rhamnosus
Lamina propria
Life Sciences
mechanism of action
Mesenchyme
metabolic processes
Mice, Inbred C57BL
Mice, Transgenic
microbial cell interaction
Microbiology and Parasitology
Molecular biology
Mucosa
MyD88 protein
Myeloid Differentiation Factor 88 - genetics
Myeloid Differentiation Factor 88 - metabolism
Myofibroblasts - metabolism
Myofibroblasts - microbiology
Phenotypes
Probiotics
Probiotics - administration & dosage
Probiotics - pharmacology
Prostaglandin E2
Prostaglandin endoperoxide synthase
Proteins
Radiation injuries
Rodents
Small intestine
Stromal cells
Subcellular Processes
title Lactobacillus rhamnosus GG increases cyclooxygenase‐2 expression and prostaglandin E2 secretion in colonic myofibroblasts via a MyD88‐dependent mechanism during homeostasis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T18%3A53%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lactobacillus%20rhamnosus%20GG%20increases%20cyclooxygenase%E2%80%902%20expression%20and%20prostaglandin%20E2%20secretion%20in%20colonic%20myofibroblasts%20via%20a%20MyD88%E2%80%90dependent%20mechanism%20during%20homeostasis&rft.jtitle=Cellular%20microbiology&rft.au=Uribe,%20Gabriela&rft.date=2018-11&rft.volume=20&rft.issue=11&rft.spage=e12871&rft.epage=n/a&rft.pages=e12871-n/a&rft.issn=1462-5814&rft.eissn=1462-5822&rft_id=info:doi/10.1111/cmi.12871&rft_dat=%3Cproquest_hal_p%3E2125018764%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2125018764&rft_id=info:pmid/29920917&rfr_iscdi=true