Anthracenyl polar embedded stationary phases with enhanced aromatic selectivity. Part II: A density functional theory study

•Enhanced affinity for polycyclic aromatic hydrocarbons than for alkylbenzenes.•Robust DFT-based computational protocol to model the overall ligand 3D structure.•Solvent effect taken into account through PCM and explicit solvation model.•Better understanding of the interaction mechanisms through a D...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Chromatography A 2017-10, Vol.1519, p.91-99
Hauptverfasser: Mignot, Mélanie, Schammé, Benjamin, Tognetti, Vincent, Joubert, Laurent, Cardinael, Pascal, Peulon-Agasse, Valérie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 99
container_issue
container_start_page 91
container_title Journal of Chromatography A
container_volume 1519
creator Mignot, Mélanie
Schammé, Benjamin
Tognetti, Vincent
Joubert, Laurent
Cardinael, Pascal
Peulon-Agasse, Valérie
description •Enhanced affinity for polycyclic aromatic hydrocarbons than for alkylbenzenes.•Robust DFT-based computational protocol to model the overall ligand 3D structure.•Solvent effect taken into account through PCM and explicit solvation model.•Better understanding of the interaction mechanisms through a DFT rationalization. New polar embedded aromatic stationary phases (mono- and trifunctional versions) that contain an amide-embedded group coupled with a tricyclic aromatic moiety were developed for chromatographic applications and described in the first paper of this series. These phases offered better separation performance for PAHs than for alkylbenzene homologues, and an enhanced ability to differentiate aromatic planarity to aromatic tridimensional conformation, especially for the trifunctional version and when using methanol instead of acetonitrile. In this second paper, a density functional theory study of the retention process is reported. In particular, it was shown that the selection of the suitable computational protocol allowed for describing rigorously the interactions that could take place, the solvent effects, and the structural changes for the monofunctional and the trifunctional versions. For the first time, the experimental data coupled with these DFT results provided a better understanding of the interaction mechanisms and highlighted the importance of the multimodal character of the designed stationary phases: alkyl spacers for interactions with hydrophobic solutes, amide embedded groups for dipole-dipole and hydrogen-bond interactions, and aromatic terminal groups for π-π interactions.
doi_str_mv 10.1016/j.chroma.2017.08.083
format Article
fullrecord <record><control><sourceid>pubmed_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01928169v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021967317313018</els_id><sourcerecordid>28911940</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-82435a2161fc2d855a8b26ef4faf95e87f3acc8029fc55dd528cc5939ab083853</originalsourceid><addsrcrecordid>eNp9kE9rGzEQxUVJaZyk36AEXXPYrf5Yu1IOARPaxGBoD-1ZyNKIlVnvGkl2MPny1WbbHAsDAzPvvWF-CH2hpKaENl93te3iuDc1I7StiSzFP6AFlS2veNvKC7QghNFKNS2_RFcp7UgRkpZ9QpdMKkrVkizQ62rIXTQWhnOPD2NvIob9FpwDh1M2OYyDiWd86EyChF9C7jAMnRls2ZvpfA4WJ-jB5nAK-VzjnyZmvF7f4xV2MKQyw_442LekHucOxpKX8tGdb9BHb_oEn__2a_T7-7dfj8_V5sfT-nG1qSxXTa4kW3JhGG2ot8xJIYzcsgb80huvBMjWc2OtJEx5K4RzgklrheLKbAsSKfg1uptzO9PrQwz78pEeTdDPq42eZoQqJmmjTrRol7PWxjGlCP7dQImeuOudnrnribsmshQvttvZdjhu9-DeTf9AF8HDLIDy6ClA1MkGmDCGWNhpN4b_X_gDMNGXuw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Anthracenyl polar embedded stationary phases with enhanced aromatic selectivity. Part II: A density functional theory study</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Mignot, Mélanie ; Schammé, Benjamin ; Tognetti, Vincent ; Joubert, Laurent ; Cardinael, Pascal ; Peulon-Agasse, Valérie</creator><creatorcontrib>Mignot, Mélanie ; Schammé, Benjamin ; Tognetti, Vincent ; Joubert, Laurent ; Cardinael, Pascal ; Peulon-Agasse, Valérie</creatorcontrib><description>•Enhanced affinity for polycyclic aromatic hydrocarbons than for alkylbenzenes.•Robust DFT-based computational protocol to model the overall ligand 3D structure.•Solvent effect taken into account through PCM and explicit solvation model.•Better understanding of the interaction mechanisms through a DFT rationalization. New polar embedded aromatic stationary phases (mono- and trifunctional versions) that contain an amide-embedded group coupled with a tricyclic aromatic moiety were developed for chromatographic applications and described in the first paper of this series. These phases offered better separation performance for PAHs than for alkylbenzene homologues, and an enhanced ability to differentiate aromatic planarity to aromatic tridimensional conformation, especially for the trifunctional version and when using methanol instead of acetonitrile. In this second paper, a density functional theory study of the retention process is reported. In particular, it was shown that the selection of the suitable computational protocol allowed for describing rigorously the interactions that could take place, the solvent effects, and the structural changes for the monofunctional and the trifunctional versions. For the first time, the experimental data coupled with these DFT results provided a better understanding of the interaction mechanisms and highlighted the importance of the multimodal character of the designed stationary phases: alkyl spacers for interactions with hydrophobic solutes, amide embedded groups for dipole-dipole and hydrogen-bond interactions, and aromatic terminal groups for π-π interactions.</description><identifier>ISSN: 0021-9673</identifier><identifier>EISSN: 1873-3778</identifier><identifier>DOI: 10.1016/j.chroma.2017.08.083</identifier><identifier>PMID: 28911940</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Analytical chemistry ; Aromatic stationary phase ; Chemical interactions ; Chemical Sciences ; Chemistry Techniques, Analytical - instrumentation ; Chemistry Techniques, Analytical - methods ; Chromatography - instrumentation ; Density functional theory ; Energy decompositions ; High-performance liquid chromatography ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Methanol - chemistry ; Molecular Conformation ; Molecular modeling ; or physical chemistry ; Organic chemistry ; Physics ; Polar embedded group ; Polycyclic Aromatic Hydrocarbons - analysis ; Polycyclic Aromatic Hydrocarbons - isolation &amp; purification ; Solvents - chemistry ; Steric selectivity ; Theoretical and</subject><ispartof>Journal of Chromatography A, 2017-10, Vol.1519, p.91-99</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright © 2017 Elsevier B.V. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-82435a2161fc2d855a8b26ef4faf95e87f3acc8029fc55dd528cc5939ab083853</citedby><cites>FETCH-LOGICAL-c396t-82435a2161fc2d855a8b26ef4faf95e87f3acc8029fc55dd528cc5939ab083853</cites><orcidid>0000-0003-3781-2830 ; 0000-0003-2649-112X ; 0000-0001-8828-4527 ; 0000-0002-0292-3509</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021967317313018$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28911940$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://normandie-univ.hal.science/hal-01928169$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Mignot, Mélanie</creatorcontrib><creatorcontrib>Schammé, Benjamin</creatorcontrib><creatorcontrib>Tognetti, Vincent</creatorcontrib><creatorcontrib>Joubert, Laurent</creatorcontrib><creatorcontrib>Cardinael, Pascal</creatorcontrib><creatorcontrib>Peulon-Agasse, Valérie</creatorcontrib><title>Anthracenyl polar embedded stationary phases with enhanced aromatic selectivity. Part II: A density functional theory study</title><title>Journal of Chromatography A</title><addtitle>J Chromatogr A</addtitle><description>•Enhanced affinity for polycyclic aromatic hydrocarbons than for alkylbenzenes.•Robust DFT-based computational protocol to model the overall ligand 3D structure.•Solvent effect taken into account through PCM and explicit solvation model.•Better understanding of the interaction mechanisms through a DFT rationalization. New polar embedded aromatic stationary phases (mono- and trifunctional versions) that contain an amide-embedded group coupled with a tricyclic aromatic moiety were developed for chromatographic applications and described in the first paper of this series. These phases offered better separation performance for PAHs than for alkylbenzene homologues, and an enhanced ability to differentiate aromatic planarity to aromatic tridimensional conformation, especially for the trifunctional version and when using methanol instead of acetonitrile. In this second paper, a density functional theory study of the retention process is reported. In particular, it was shown that the selection of the suitable computational protocol allowed for describing rigorously the interactions that could take place, the solvent effects, and the structural changes for the monofunctional and the trifunctional versions. For the first time, the experimental data coupled with these DFT results provided a better understanding of the interaction mechanisms and highlighted the importance of the multimodal character of the designed stationary phases: alkyl spacers for interactions with hydrophobic solutes, amide embedded groups for dipole-dipole and hydrogen-bond interactions, and aromatic terminal groups for π-π interactions.</description><subject>Analytical chemistry</subject><subject>Aromatic stationary phase</subject><subject>Chemical interactions</subject><subject>Chemical Sciences</subject><subject>Chemistry Techniques, Analytical - instrumentation</subject><subject>Chemistry Techniques, Analytical - methods</subject><subject>Chromatography - instrumentation</subject><subject>Density functional theory</subject><subject>Energy decompositions</subject><subject>High-performance liquid chromatography</subject><subject>Hydrogen Bonding</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Methanol - chemistry</subject><subject>Molecular Conformation</subject><subject>Molecular modeling</subject><subject>or physical chemistry</subject><subject>Organic chemistry</subject><subject>Physics</subject><subject>Polar embedded group</subject><subject>Polycyclic Aromatic Hydrocarbons - analysis</subject><subject>Polycyclic Aromatic Hydrocarbons - isolation &amp; purification</subject><subject>Solvents - chemistry</subject><subject>Steric selectivity</subject><subject>Theoretical and</subject><issn>0021-9673</issn><issn>1873-3778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE9rGzEQxUVJaZyk36AEXXPYrf5Yu1IOARPaxGBoD-1ZyNKIlVnvGkl2MPny1WbbHAsDAzPvvWF-CH2hpKaENl93te3iuDc1I7StiSzFP6AFlS2veNvKC7QghNFKNS2_RFcp7UgRkpZ9QpdMKkrVkizQ62rIXTQWhnOPD2NvIob9FpwDh1M2OYyDiWd86EyChF9C7jAMnRls2ZvpfA4WJ-jB5nAK-VzjnyZmvF7f4xV2MKQyw_442LekHucOxpKX8tGdb9BHb_oEn__2a_T7-7dfj8_V5sfT-nG1qSxXTa4kW3JhGG2ot8xJIYzcsgb80huvBMjWc2OtJEx5K4RzgklrheLKbAsSKfg1uptzO9PrQwz78pEeTdDPq42eZoQqJmmjTrRol7PWxjGlCP7dQImeuOudnrnribsmshQvttvZdjhu9-DeTf9AF8HDLIDy6ClA1MkGmDCGWNhpN4b_X_gDMNGXuw</recordid><startdate>20171013</startdate><enddate>20171013</enddate><creator>Mignot, Mélanie</creator><creator>Schammé, Benjamin</creator><creator>Tognetti, Vincent</creator><creator>Joubert, Laurent</creator><creator>Cardinael, Pascal</creator><creator>Peulon-Agasse, Valérie</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-3781-2830</orcidid><orcidid>https://orcid.org/0000-0003-2649-112X</orcidid><orcidid>https://orcid.org/0000-0001-8828-4527</orcidid><orcidid>https://orcid.org/0000-0002-0292-3509</orcidid></search><sort><creationdate>20171013</creationdate><title>Anthracenyl polar embedded stationary phases with enhanced aromatic selectivity. Part II: A density functional theory study</title><author>Mignot, Mélanie ; Schammé, Benjamin ; Tognetti, Vincent ; Joubert, Laurent ; Cardinael, Pascal ; Peulon-Agasse, Valérie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-82435a2161fc2d855a8b26ef4faf95e87f3acc8029fc55dd528cc5939ab083853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analytical chemistry</topic><topic>Aromatic stationary phase</topic><topic>Chemical interactions</topic><topic>Chemical Sciences</topic><topic>Chemistry Techniques, Analytical - instrumentation</topic><topic>Chemistry Techniques, Analytical - methods</topic><topic>Chromatography - instrumentation</topic><topic>Density functional theory</topic><topic>Energy decompositions</topic><topic>High-performance liquid chromatography</topic><topic>Hydrogen Bonding</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Methanol - chemistry</topic><topic>Molecular Conformation</topic><topic>Molecular modeling</topic><topic>or physical chemistry</topic><topic>Organic chemistry</topic><topic>Physics</topic><topic>Polar embedded group</topic><topic>Polycyclic Aromatic Hydrocarbons - analysis</topic><topic>Polycyclic Aromatic Hydrocarbons - isolation &amp; purification</topic><topic>Solvents - chemistry</topic><topic>Steric selectivity</topic><topic>Theoretical and</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mignot, Mélanie</creatorcontrib><creatorcontrib>Schammé, Benjamin</creatorcontrib><creatorcontrib>Tognetti, Vincent</creatorcontrib><creatorcontrib>Joubert, Laurent</creatorcontrib><creatorcontrib>Cardinael, Pascal</creatorcontrib><creatorcontrib>Peulon-Agasse, Valérie</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of Chromatography A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mignot, Mélanie</au><au>Schammé, Benjamin</au><au>Tognetti, Vincent</au><au>Joubert, Laurent</au><au>Cardinael, Pascal</au><au>Peulon-Agasse, Valérie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anthracenyl polar embedded stationary phases with enhanced aromatic selectivity. Part II: A density functional theory study</atitle><jtitle>Journal of Chromatography A</jtitle><addtitle>J Chromatogr A</addtitle><date>2017-10-13</date><risdate>2017</risdate><volume>1519</volume><spage>91</spage><epage>99</epage><pages>91-99</pages><issn>0021-9673</issn><eissn>1873-3778</eissn><abstract>•Enhanced affinity for polycyclic aromatic hydrocarbons than for alkylbenzenes.•Robust DFT-based computational protocol to model the overall ligand 3D structure.•Solvent effect taken into account through PCM and explicit solvation model.•Better understanding of the interaction mechanisms through a DFT rationalization. New polar embedded aromatic stationary phases (mono- and trifunctional versions) that contain an amide-embedded group coupled with a tricyclic aromatic moiety were developed for chromatographic applications and described in the first paper of this series. These phases offered better separation performance for PAHs than for alkylbenzene homologues, and an enhanced ability to differentiate aromatic planarity to aromatic tridimensional conformation, especially for the trifunctional version and when using methanol instead of acetonitrile. In this second paper, a density functional theory study of the retention process is reported. In particular, it was shown that the selection of the suitable computational protocol allowed for describing rigorously the interactions that could take place, the solvent effects, and the structural changes for the monofunctional and the trifunctional versions. For the first time, the experimental data coupled with these DFT results provided a better understanding of the interaction mechanisms and highlighted the importance of the multimodal character of the designed stationary phases: alkyl spacers for interactions with hydrophobic solutes, amide embedded groups for dipole-dipole and hydrogen-bond interactions, and aromatic terminal groups for π-π interactions.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>28911940</pmid><doi>10.1016/j.chroma.2017.08.083</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3781-2830</orcidid><orcidid>https://orcid.org/0000-0003-2649-112X</orcidid><orcidid>https://orcid.org/0000-0001-8828-4527</orcidid><orcidid>https://orcid.org/0000-0002-0292-3509</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9673
ispartof Journal of Chromatography A, 2017-10, Vol.1519, p.91-99
issn 0021-9673
1873-3778
language eng
recordid cdi_hal_primary_oai_HAL_hal_01928169v1
source MEDLINE; Elsevier ScienceDirect Journals
subjects Analytical chemistry
Aromatic stationary phase
Chemical interactions
Chemical Sciences
Chemistry Techniques, Analytical - instrumentation
Chemistry Techniques, Analytical - methods
Chromatography - instrumentation
Density functional theory
Energy decompositions
High-performance liquid chromatography
Hydrogen Bonding
Hydrophobic and Hydrophilic Interactions
Methanol - chemistry
Molecular Conformation
Molecular modeling
or physical chemistry
Organic chemistry
Physics
Polar embedded group
Polycyclic Aromatic Hydrocarbons - analysis
Polycyclic Aromatic Hydrocarbons - isolation & purification
Solvents - chemistry
Steric selectivity
Theoretical and
title Anthracenyl polar embedded stationary phases with enhanced aromatic selectivity. Part II: A density functional theory study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T20%3A18%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anthracenyl%20polar%20embedded%20stationary%20phases%20with%20enhanced%20aromatic%20selectivity.%20Part%20II:%20A%20density%20functional%20theory%20study&rft.jtitle=Journal%20of%20Chromatography%20A&rft.au=Mignot,%20M%C3%A9lanie&rft.date=2017-10-13&rft.volume=1519&rft.spage=91&rft.epage=99&rft.pages=91-99&rft.issn=0021-9673&rft.eissn=1873-3778&rft_id=info:doi/10.1016/j.chroma.2017.08.083&rft_dat=%3Cpubmed_hal_p%3E28911940%3C/pubmed_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/28911940&rft_els_id=S0021967317313018&rfr_iscdi=true