Anthracenyl polar embedded stationary phases with enhanced aromatic selectivity. Part II: A density functional theory study
•Enhanced affinity for polycyclic aromatic hydrocarbons than for alkylbenzenes.•Robust DFT-based computational protocol to model the overall ligand 3D structure.•Solvent effect taken into account through PCM and explicit solvation model.•Better understanding of the interaction mechanisms through a D...
Gespeichert in:
Veröffentlicht in: | Journal of Chromatography A 2017-10, Vol.1519, p.91-99 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 99 |
---|---|
container_issue | |
container_start_page | 91 |
container_title | Journal of Chromatography A |
container_volume | 1519 |
creator | Mignot, Mélanie Schammé, Benjamin Tognetti, Vincent Joubert, Laurent Cardinael, Pascal Peulon-Agasse, Valérie |
description | •Enhanced affinity for polycyclic aromatic hydrocarbons than for alkylbenzenes.•Robust DFT-based computational protocol to model the overall ligand 3D structure.•Solvent effect taken into account through PCM and explicit solvation model.•Better understanding of the interaction mechanisms through a DFT rationalization.
New polar embedded aromatic stationary phases (mono- and trifunctional versions) that contain an amide-embedded group coupled with a tricyclic aromatic moiety were developed for chromatographic applications and described in the first paper of this series. These phases offered better separation performance for PAHs than for alkylbenzene homologues, and an enhanced ability to differentiate aromatic planarity to aromatic tridimensional conformation, especially for the trifunctional version and when using methanol instead of acetonitrile. In this second paper, a density functional theory study of the retention process is reported. In particular, it was shown that the selection of the suitable computational protocol allowed for describing rigorously the interactions that could take place, the solvent effects, and the structural changes for the monofunctional and the trifunctional versions. For the first time, the experimental data coupled with these DFT results provided a better understanding of the interaction mechanisms and highlighted the importance of the multimodal character of the designed stationary phases: alkyl spacers for interactions with hydrophobic solutes, amide embedded groups for dipole-dipole and hydrogen-bond interactions, and aromatic terminal groups for π-π interactions. |
doi_str_mv | 10.1016/j.chroma.2017.08.083 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01928169v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021967317313018</els_id><sourcerecordid>28911940</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-82435a2161fc2d855a8b26ef4faf95e87f3acc8029fc55dd528cc5939ab083853</originalsourceid><addsrcrecordid>eNp9kE9rGzEQxUVJaZyk36AEXXPYrf5Yu1IOARPaxGBoD-1ZyNKIlVnvGkl2MPny1WbbHAsDAzPvvWF-CH2hpKaENl93te3iuDc1I7StiSzFP6AFlS2veNvKC7QghNFKNS2_RFcp7UgRkpZ9QpdMKkrVkizQ62rIXTQWhnOPD2NvIob9FpwDh1M2OYyDiWd86EyChF9C7jAMnRls2ZvpfA4WJ-jB5nAK-VzjnyZmvF7f4xV2MKQyw_442LekHucOxpKX8tGdb9BHb_oEn__2a_T7-7dfj8_V5sfT-nG1qSxXTa4kW3JhGG2ot8xJIYzcsgb80huvBMjWc2OtJEx5K4RzgklrheLKbAsSKfg1uptzO9PrQwz78pEeTdDPq42eZoQqJmmjTrRol7PWxjGlCP7dQImeuOudnrnribsmshQvttvZdjhu9-DeTf9AF8HDLIDy6ClA1MkGmDCGWNhpN4b_X_gDMNGXuw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Anthracenyl polar embedded stationary phases with enhanced aromatic selectivity. Part II: A density functional theory study</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Mignot, Mélanie ; Schammé, Benjamin ; Tognetti, Vincent ; Joubert, Laurent ; Cardinael, Pascal ; Peulon-Agasse, Valérie</creator><creatorcontrib>Mignot, Mélanie ; Schammé, Benjamin ; Tognetti, Vincent ; Joubert, Laurent ; Cardinael, Pascal ; Peulon-Agasse, Valérie</creatorcontrib><description>•Enhanced affinity for polycyclic aromatic hydrocarbons than for alkylbenzenes.•Robust DFT-based computational protocol to model the overall ligand 3D structure.•Solvent effect taken into account through PCM and explicit solvation model.•Better understanding of the interaction mechanisms through a DFT rationalization.
New polar embedded aromatic stationary phases (mono- and trifunctional versions) that contain an amide-embedded group coupled with a tricyclic aromatic moiety were developed for chromatographic applications and described in the first paper of this series. These phases offered better separation performance for PAHs than for alkylbenzene homologues, and an enhanced ability to differentiate aromatic planarity to aromatic tridimensional conformation, especially for the trifunctional version and when using methanol instead of acetonitrile. In this second paper, a density functional theory study of the retention process is reported. In particular, it was shown that the selection of the suitable computational protocol allowed for describing rigorously the interactions that could take place, the solvent effects, and the structural changes for the monofunctional and the trifunctional versions. For the first time, the experimental data coupled with these DFT results provided a better understanding of the interaction mechanisms and highlighted the importance of the multimodal character of the designed stationary phases: alkyl spacers for interactions with hydrophobic solutes, amide embedded groups for dipole-dipole and hydrogen-bond interactions, and aromatic terminal groups for π-π interactions.</description><identifier>ISSN: 0021-9673</identifier><identifier>EISSN: 1873-3778</identifier><identifier>DOI: 10.1016/j.chroma.2017.08.083</identifier><identifier>PMID: 28911940</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Analytical chemistry ; Aromatic stationary phase ; Chemical interactions ; Chemical Sciences ; Chemistry Techniques, Analytical - instrumentation ; Chemistry Techniques, Analytical - methods ; Chromatography - instrumentation ; Density functional theory ; Energy decompositions ; High-performance liquid chromatography ; Hydrogen Bonding ; Hydrophobic and Hydrophilic Interactions ; Methanol - chemistry ; Molecular Conformation ; Molecular modeling ; or physical chemistry ; Organic chemistry ; Physics ; Polar embedded group ; Polycyclic Aromatic Hydrocarbons - analysis ; Polycyclic Aromatic Hydrocarbons - isolation & purification ; Solvents - chemistry ; Steric selectivity ; Theoretical and</subject><ispartof>Journal of Chromatography A, 2017-10, Vol.1519, p.91-99</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright © 2017 Elsevier B.V. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-82435a2161fc2d855a8b26ef4faf95e87f3acc8029fc55dd528cc5939ab083853</citedby><cites>FETCH-LOGICAL-c396t-82435a2161fc2d855a8b26ef4faf95e87f3acc8029fc55dd528cc5939ab083853</cites><orcidid>0000-0003-3781-2830 ; 0000-0003-2649-112X ; 0000-0001-8828-4527 ; 0000-0002-0292-3509</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0021967317313018$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3536,27903,27904,65309</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28911940$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://normandie-univ.hal.science/hal-01928169$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Mignot, Mélanie</creatorcontrib><creatorcontrib>Schammé, Benjamin</creatorcontrib><creatorcontrib>Tognetti, Vincent</creatorcontrib><creatorcontrib>Joubert, Laurent</creatorcontrib><creatorcontrib>Cardinael, Pascal</creatorcontrib><creatorcontrib>Peulon-Agasse, Valérie</creatorcontrib><title>Anthracenyl polar embedded stationary phases with enhanced aromatic selectivity. Part II: A density functional theory study</title><title>Journal of Chromatography A</title><addtitle>J Chromatogr A</addtitle><description>•Enhanced affinity for polycyclic aromatic hydrocarbons than for alkylbenzenes.•Robust DFT-based computational protocol to model the overall ligand 3D structure.•Solvent effect taken into account through PCM and explicit solvation model.•Better understanding of the interaction mechanisms through a DFT rationalization.
New polar embedded aromatic stationary phases (mono- and trifunctional versions) that contain an amide-embedded group coupled with a tricyclic aromatic moiety were developed for chromatographic applications and described in the first paper of this series. These phases offered better separation performance for PAHs than for alkylbenzene homologues, and an enhanced ability to differentiate aromatic planarity to aromatic tridimensional conformation, especially for the trifunctional version and when using methanol instead of acetonitrile. In this second paper, a density functional theory study of the retention process is reported. In particular, it was shown that the selection of the suitable computational protocol allowed for describing rigorously the interactions that could take place, the solvent effects, and the structural changes for the monofunctional and the trifunctional versions. For the first time, the experimental data coupled with these DFT results provided a better understanding of the interaction mechanisms and highlighted the importance of the multimodal character of the designed stationary phases: alkyl spacers for interactions with hydrophobic solutes, amide embedded groups for dipole-dipole and hydrogen-bond interactions, and aromatic terminal groups for π-π interactions.</description><subject>Analytical chemistry</subject><subject>Aromatic stationary phase</subject><subject>Chemical interactions</subject><subject>Chemical Sciences</subject><subject>Chemistry Techniques, Analytical - instrumentation</subject><subject>Chemistry Techniques, Analytical - methods</subject><subject>Chromatography - instrumentation</subject><subject>Density functional theory</subject><subject>Energy decompositions</subject><subject>High-performance liquid chromatography</subject><subject>Hydrogen Bonding</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Methanol - chemistry</subject><subject>Molecular Conformation</subject><subject>Molecular modeling</subject><subject>or physical chemistry</subject><subject>Organic chemistry</subject><subject>Physics</subject><subject>Polar embedded group</subject><subject>Polycyclic Aromatic Hydrocarbons - analysis</subject><subject>Polycyclic Aromatic Hydrocarbons - isolation & purification</subject><subject>Solvents - chemistry</subject><subject>Steric selectivity</subject><subject>Theoretical and</subject><issn>0021-9673</issn><issn>1873-3778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE9rGzEQxUVJaZyk36AEXXPYrf5Yu1IOARPaxGBoD-1ZyNKIlVnvGkl2MPny1WbbHAsDAzPvvWF-CH2hpKaENl93te3iuDc1I7StiSzFP6AFlS2veNvKC7QghNFKNS2_RFcp7UgRkpZ9QpdMKkrVkizQ62rIXTQWhnOPD2NvIob9FpwDh1M2OYyDiWd86EyChF9C7jAMnRls2ZvpfA4WJ-jB5nAK-VzjnyZmvF7f4xV2MKQyw_442LekHucOxpKX8tGdb9BHb_oEn__2a_T7-7dfj8_V5sfT-nG1qSxXTa4kW3JhGG2ot8xJIYzcsgb80huvBMjWc2OtJEx5K4RzgklrheLKbAsSKfg1uptzO9PrQwz78pEeTdDPq42eZoQqJmmjTrRol7PWxjGlCP7dQImeuOudnrnribsmshQvttvZdjhu9-DeTf9AF8HDLIDy6ClA1MkGmDCGWNhpN4b_X_gDMNGXuw</recordid><startdate>20171013</startdate><enddate>20171013</enddate><creator>Mignot, Mélanie</creator><creator>Schammé, Benjamin</creator><creator>Tognetti, Vincent</creator><creator>Joubert, Laurent</creator><creator>Cardinael, Pascal</creator><creator>Peulon-Agasse, Valérie</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0003-3781-2830</orcidid><orcidid>https://orcid.org/0000-0003-2649-112X</orcidid><orcidid>https://orcid.org/0000-0001-8828-4527</orcidid><orcidid>https://orcid.org/0000-0002-0292-3509</orcidid></search><sort><creationdate>20171013</creationdate><title>Anthracenyl polar embedded stationary phases with enhanced aromatic selectivity. Part II: A density functional theory study</title><author>Mignot, Mélanie ; Schammé, Benjamin ; Tognetti, Vincent ; Joubert, Laurent ; Cardinael, Pascal ; Peulon-Agasse, Valérie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-82435a2161fc2d855a8b26ef4faf95e87f3acc8029fc55dd528cc5939ab083853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analytical chemistry</topic><topic>Aromatic stationary phase</topic><topic>Chemical interactions</topic><topic>Chemical Sciences</topic><topic>Chemistry Techniques, Analytical - instrumentation</topic><topic>Chemistry Techniques, Analytical - methods</topic><topic>Chromatography - instrumentation</topic><topic>Density functional theory</topic><topic>Energy decompositions</topic><topic>High-performance liquid chromatography</topic><topic>Hydrogen Bonding</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Methanol - chemistry</topic><topic>Molecular Conformation</topic><topic>Molecular modeling</topic><topic>or physical chemistry</topic><topic>Organic chemistry</topic><topic>Physics</topic><topic>Polar embedded group</topic><topic>Polycyclic Aromatic Hydrocarbons - analysis</topic><topic>Polycyclic Aromatic Hydrocarbons - isolation & purification</topic><topic>Solvents - chemistry</topic><topic>Steric selectivity</topic><topic>Theoretical and</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mignot, Mélanie</creatorcontrib><creatorcontrib>Schammé, Benjamin</creatorcontrib><creatorcontrib>Tognetti, Vincent</creatorcontrib><creatorcontrib>Joubert, Laurent</creatorcontrib><creatorcontrib>Cardinael, Pascal</creatorcontrib><creatorcontrib>Peulon-Agasse, Valérie</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Journal of Chromatography A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mignot, Mélanie</au><au>Schammé, Benjamin</au><au>Tognetti, Vincent</au><au>Joubert, Laurent</au><au>Cardinael, Pascal</au><au>Peulon-Agasse, Valérie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anthracenyl polar embedded stationary phases with enhanced aromatic selectivity. Part II: A density functional theory study</atitle><jtitle>Journal of Chromatography A</jtitle><addtitle>J Chromatogr A</addtitle><date>2017-10-13</date><risdate>2017</risdate><volume>1519</volume><spage>91</spage><epage>99</epage><pages>91-99</pages><issn>0021-9673</issn><eissn>1873-3778</eissn><abstract>•Enhanced affinity for polycyclic aromatic hydrocarbons than for alkylbenzenes.•Robust DFT-based computational protocol to model the overall ligand 3D structure.•Solvent effect taken into account through PCM and explicit solvation model.•Better understanding of the interaction mechanisms through a DFT rationalization.
New polar embedded aromatic stationary phases (mono- and trifunctional versions) that contain an amide-embedded group coupled with a tricyclic aromatic moiety were developed for chromatographic applications and described in the first paper of this series. These phases offered better separation performance for PAHs than for alkylbenzene homologues, and an enhanced ability to differentiate aromatic planarity to aromatic tridimensional conformation, especially for the trifunctional version and when using methanol instead of acetonitrile. In this second paper, a density functional theory study of the retention process is reported. In particular, it was shown that the selection of the suitable computational protocol allowed for describing rigorously the interactions that could take place, the solvent effects, and the structural changes for the monofunctional and the trifunctional versions. For the first time, the experimental data coupled with these DFT results provided a better understanding of the interaction mechanisms and highlighted the importance of the multimodal character of the designed stationary phases: alkyl spacers for interactions with hydrophobic solutes, amide embedded groups for dipole-dipole and hydrogen-bond interactions, and aromatic terminal groups for π-π interactions.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>28911940</pmid><doi>10.1016/j.chroma.2017.08.083</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3781-2830</orcidid><orcidid>https://orcid.org/0000-0003-2649-112X</orcidid><orcidid>https://orcid.org/0000-0001-8828-4527</orcidid><orcidid>https://orcid.org/0000-0002-0292-3509</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9673 |
ispartof | Journal of Chromatography A, 2017-10, Vol.1519, p.91-99 |
issn | 0021-9673 1873-3778 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01928169v1 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Analytical chemistry Aromatic stationary phase Chemical interactions Chemical Sciences Chemistry Techniques, Analytical - instrumentation Chemistry Techniques, Analytical - methods Chromatography - instrumentation Density functional theory Energy decompositions High-performance liquid chromatography Hydrogen Bonding Hydrophobic and Hydrophilic Interactions Methanol - chemistry Molecular Conformation Molecular modeling or physical chemistry Organic chemistry Physics Polar embedded group Polycyclic Aromatic Hydrocarbons - analysis Polycyclic Aromatic Hydrocarbons - isolation & purification Solvents - chemistry Steric selectivity Theoretical and |
title | Anthracenyl polar embedded stationary phases with enhanced aromatic selectivity. Part II: A density functional theory study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T20%3A18%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anthracenyl%20polar%20embedded%20stationary%20phases%20with%20enhanced%20aromatic%20selectivity.%20Part%20II:%20A%20density%20functional%20theory%20study&rft.jtitle=Journal%20of%20Chromatography%20A&rft.au=Mignot,%20M%C3%A9lanie&rft.date=2017-10-13&rft.volume=1519&rft.spage=91&rft.epage=99&rft.pages=91-99&rft.issn=0021-9673&rft.eissn=1873-3778&rft_id=info:doi/10.1016/j.chroma.2017.08.083&rft_dat=%3Cpubmed_hal_p%3E28911940%3C/pubmed_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/28911940&rft_els_id=S0021967317313018&rfr_iscdi=true |