Obsolescence prediction: a Bayesian model

It is critical for systems or products to deal with obsolescence and diminishing manufacturing sources and material shortages (DMSMS) of their parts. Any obsolescence or DMSMS may become a show-stopper impacting the global system. This paper proposes a model of the propagation of obsolescence/DMSMS...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Procedia CIRP 2018, Vol.70, p.392-397
Hauptverfasser: Zolghadri, Marc, Addouche, Sid-Ali, Boissie, Kevin, Richard, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 397
container_issue
container_start_page 392
container_title Procedia CIRP
container_volume 70
creator Zolghadri, Marc
Addouche, Sid-Ali
Boissie, Kevin
Richard, Daniel
description It is critical for systems or products to deal with obsolescence and diminishing manufacturing sources and material shortages (DMSMS) of their parts. Any obsolescence or DMSMS may become a show-stopper impacting the global system. This paper proposes a model of the propagation of obsolescence/DMSMS throughout the system. It is established upon on the system architecture, where the dependencies (functional or structural) among system components are analyzed. Gathering the data from the market, the model predicts the impact of an obsolescence/DMSMS considering the uncertainties, which are further quantified by mitigation costs and delay. The paper presents the application in a study case originated from the car industry.
doi_str_mv 10.1016/j.procir.2018.02.037
format Article
fullrecord <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01925143v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2212827118303354</els_id><sourcerecordid>oai_HAL_hal_01925143v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-9117d54671738ab1c0305f8a6764804861f89fc95a383cb16f3e966d51f30dac3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWGq_gYe99rDrTJJNsh6EWtQKhV70HNL8wZRttySl0G_vLiviybnMMLz34P0IuUeoEFA87Kpj6mxMFQVUFdAKmLwiE0qRlopKvP5z35JZzjvoR3JgSCdkvtnmrvXZ-oP1xTF5F-0pdofHwhTP5uJzNIdi3znf3pGbYNrsZz97Sj5fXz6Wq3K9eXtfLtal5aw5lQ2idDUXEiVTZosWGNRBGSEFV8CVwKCaYJvaMMXsFkVgvhHC1RgYOGPZlMzH3C_T6mOKe5MuujNRrxZrPfwAG1ojZ2fstXzU2tTlnHz4NSDogY7e6ZGOHuhooLqn09ueRpvve5yjTzrbOABwMXl70q6L_wd8Aw96bKc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Obsolescence prediction: a Bayesian model</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Zolghadri, Marc ; Addouche, Sid-Ali ; Boissie, Kevin ; Richard, Daniel</creator><creatorcontrib>Zolghadri, Marc ; Addouche, Sid-Ali ; Boissie, Kevin ; Richard, Daniel</creatorcontrib><description>It is critical for systems or products to deal with obsolescence and diminishing manufacturing sources and material shortages (DMSMS) of their parts. Any obsolescence or DMSMS may become a show-stopper impacting the global system. This paper proposes a model of the propagation of obsolescence/DMSMS throughout the system. It is established upon on the system architecture, where the dependencies (functional or structural) among system components are analyzed. Gathering the data from the market, the model predicts the impact of an obsolescence/DMSMS considering the uncertainties, which are further quantified by mitigation costs and delay. The paper presents the application in a study case originated from the car industry.</description><identifier>ISSN: 2212-8271</identifier><identifier>EISSN: 2212-8271</identifier><identifier>DOI: 10.1016/j.procir.2018.02.037</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Chemical and Process Engineering ; DMSMS ; Engineering Sciences ; Mitigation ; Obsolescence ; Prediction</subject><ispartof>Procedia CIRP, 2018, Vol.70, p.392-397</ispartof><rights>2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-9117d54671738ab1c0305f8a6764804861f89fc95a383cb16f3e966d51f30dac3</citedby><cites>FETCH-LOGICAL-c439t-9117d54671738ab1c0305f8a6764804861f89fc95a383cb16f3e966d51f30dac3</cites><orcidid>0000-0002-4088-6526 ; 0000-0002-0377-2271</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,4009,27902,27903,27904</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01925143$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Zolghadri, Marc</creatorcontrib><creatorcontrib>Addouche, Sid-Ali</creatorcontrib><creatorcontrib>Boissie, Kevin</creatorcontrib><creatorcontrib>Richard, Daniel</creatorcontrib><title>Obsolescence prediction: a Bayesian model</title><title>Procedia CIRP</title><description>It is critical for systems or products to deal with obsolescence and diminishing manufacturing sources and material shortages (DMSMS) of their parts. Any obsolescence or DMSMS may become a show-stopper impacting the global system. This paper proposes a model of the propagation of obsolescence/DMSMS throughout the system. It is established upon on the system architecture, where the dependencies (functional or structural) among system components are analyzed. Gathering the data from the market, the model predicts the impact of an obsolescence/DMSMS considering the uncertainties, which are further quantified by mitigation costs and delay. The paper presents the application in a study case originated from the car industry.</description><subject>Chemical and Process Engineering</subject><subject>DMSMS</subject><subject>Engineering Sciences</subject><subject>Mitigation</subject><subject>Obsolescence</subject><subject>Prediction</subject><issn>2212-8271</issn><issn>2212-8271</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWGq_gYe99rDrTJJNsh6EWtQKhV70HNL8wZRttySl0G_vLiviybnMMLz34P0IuUeoEFA87Kpj6mxMFQVUFdAKmLwiE0qRlopKvP5z35JZzjvoR3JgSCdkvtnmrvXZ-oP1xTF5F-0pdofHwhTP5uJzNIdi3znf3pGbYNrsZz97Sj5fXz6Wq3K9eXtfLtal5aw5lQ2idDUXEiVTZosWGNRBGSEFV8CVwKCaYJvaMMXsFkVgvhHC1RgYOGPZlMzH3C_T6mOKe5MuujNRrxZrPfwAG1ojZ2fstXzU2tTlnHz4NSDogY7e6ZGOHuhooLqn09ueRpvve5yjTzrbOABwMXl70q6L_wd8Aw96bKc</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Zolghadri, Marc</creator><creator>Addouche, Sid-Ali</creator><creator>Boissie, Kevin</creator><creator>Richard, Daniel</creator><general>Elsevier B.V</general><general>ELSEVIER</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-4088-6526</orcidid><orcidid>https://orcid.org/0000-0002-0377-2271</orcidid></search><sort><creationdate>2018</creationdate><title>Obsolescence prediction: a Bayesian model</title><author>Zolghadri, Marc ; Addouche, Sid-Ali ; Boissie, Kevin ; Richard, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-9117d54671738ab1c0305f8a6764804861f89fc95a383cb16f3e966d51f30dac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Chemical and Process Engineering</topic><topic>DMSMS</topic><topic>Engineering Sciences</topic><topic>Mitigation</topic><topic>Obsolescence</topic><topic>Prediction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zolghadri, Marc</creatorcontrib><creatorcontrib>Addouche, Sid-Ali</creatorcontrib><creatorcontrib>Boissie, Kevin</creatorcontrib><creatorcontrib>Richard, Daniel</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Procedia CIRP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zolghadri, Marc</au><au>Addouche, Sid-Ali</au><au>Boissie, Kevin</au><au>Richard, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Obsolescence prediction: a Bayesian model</atitle><jtitle>Procedia CIRP</jtitle><date>2018</date><risdate>2018</risdate><volume>70</volume><spage>392</spage><epage>397</epage><pages>392-397</pages><issn>2212-8271</issn><eissn>2212-8271</eissn><abstract>It is critical for systems or products to deal with obsolescence and diminishing manufacturing sources and material shortages (DMSMS) of their parts. Any obsolescence or DMSMS may become a show-stopper impacting the global system. This paper proposes a model of the propagation of obsolescence/DMSMS throughout the system. It is established upon on the system architecture, where the dependencies (functional or structural) among system components are analyzed. Gathering the data from the market, the model predicts the impact of an obsolescence/DMSMS considering the uncertainties, which are further quantified by mitigation costs and delay. The paper presents the application in a study case originated from the car industry.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.procir.2018.02.037</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-4088-6526</orcidid><orcidid>https://orcid.org/0000-0002-0377-2271</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2212-8271
ispartof Procedia CIRP, 2018, Vol.70, p.392-397
issn 2212-8271
2212-8271
language eng
recordid cdi_hal_primary_oai_HAL_hal_01925143v1
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Chemical and Process Engineering
DMSMS
Engineering Sciences
Mitigation
Obsolescence
Prediction
title Obsolescence prediction: a Bayesian model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T15%3A09%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Obsolescence%20prediction:%20a%20Bayesian%20model&rft.jtitle=Procedia%20CIRP&rft.au=Zolghadri,%20Marc&rft.date=2018&rft.volume=70&rft.spage=392&rft.epage=397&rft.pages=392-397&rft.issn=2212-8271&rft.eissn=2212-8271&rft_id=info:doi/10.1016/j.procir.2018.02.037&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01925143v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S2212827118303354&rfr_iscdi=true