Obsolescence prediction: a Bayesian model
It is critical for systems or products to deal with obsolescence and diminishing manufacturing sources and material shortages (DMSMS) of their parts. Any obsolescence or DMSMS may become a show-stopper impacting the global system. This paper proposes a model of the propagation of obsolescence/DMSMS...
Gespeichert in:
Veröffentlicht in: | Procedia CIRP 2018, Vol.70, p.392-397 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 397 |
---|---|
container_issue | |
container_start_page | 392 |
container_title | Procedia CIRP |
container_volume | 70 |
creator | Zolghadri, Marc Addouche, Sid-Ali Boissie, Kevin Richard, Daniel |
description | It is critical for systems or products to deal with obsolescence and diminishing manufacturing sources and material shortages (DMSMS) of their parts. Any obsolescence or DMSMS may become a show-stopper impacting the global system. This paper proposes a model of the propagation of obsolescence/DMSMS throughout the system. It is established upon on the system architecture, where the dependencies (functional or structural) among system components are analyzed. Gathering the data from the market, the model predicts the impact of an obsolescence/DMSMS considering the uncertainties, which are further quantified by mitigation costs and delay. The paper presents the application in a study case originated from the car industry. |
doi_str_mv | 10.1016/j.procir.2018.02.037 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01925143v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2212827118303354</els_id><sourcerecordid>oai_HAL_hal_01925143v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c439t-9117d54671738ab1c0305f8a6764804861f89fc95a383cb16f3e966d51f30dac3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWGq_gYe99rDrTJJNsh6EWtQKhV70HNL8wZRttySl0G_vLiviybnMMLz34P0IuUeoEFA87Kpj6mxMFQVUFdAKmLwiE0qRlopKvP5z35JZzjvoR3JgSCdkvtnmrvXZ-oP1xTF5F-0pdofHwhTP5uJzNIdi3znf3pGbYNrsZz97Sj5fXz6Wq3K9eXtfLtal5aw5lQ2idDUXEiVTZosWGNRBGSEFV8CVwKCaYJvaMMXsFkVgvhHC1RgYOGPZlMzH3C_T6mOKe5MuujNRrxZrPfwAG1ojZ2fstXzU2tTlnHz4NSDogY7e6ZGOHuhooLqn09ueRpvve5yjTzrbOABwMXl70q6L_wd8Aw96bKc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Obsolescence prediction: a Bayesian model</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Zolghadri, Marc ; Addouche, Sid-Ali ; Boissie, Kevin ; Richard, Daniel</creator><creatorcontrib>Zolghadri, Marc ; Addouche, Sid-Ali ; Boissie, Kevin ; Richard, Daniel</creatorcontrib><description>It is critical for systems or products to deal with obsolescence and diminishing manufacturing sources and material shortages (DMSMS) of their parts. Any obsolescence or DMSMS may become a show-stopper impacting the global system. This paper proposes a model of the propagation of obsolescence/DMSMS throughout the system. It is established upon on the system architecture, where the dependencies (functional or structural) among system components are analyzed. Gathering the data from the market, the model predicts the impact of an obsolescence/DMSMS considering the uncertainties, which are further quantified by mitigation costs and delay. The paper presents the application in a study case originated from the car industry.</description><identifier>ISSN: 2212-8271</identifier><identifier>EISSN: 2212-8271</identifier><identifier>DOI: 10.1016/j.procir.2018.02.037</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Chemical and Process Engineering ; DMSMS ; Engineering Sciences ; Mitigation ; Obsolescence ; Prediction</subject><ispartof>Procedia CIRP, 2018, Vol.70, p.392-397</ispartof><rights>2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c439t-9117d54671738ab1c0305f8a6764804861f89fc95a383cb16f3e966d51f30dac3</citedby><cites>FETCH-LOGICAL-c439t-9117d54671738ab1c0305f8a6764804861f89fc95a383cb16f3e966d51f30dac3</cites><orcidid>0000-0002-4088-6526 ; 0000-0002-0377-2271</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,4009,27902,27903,27904</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01925143$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Zolghadri, Marc</creatorcontrib><creatorcontrib>Addouche, Sid-Ali</creatorcontrib><creatorcontrib>Boissie, Kevin</creatorcontrib><creatorcontrib>Richard, Daniel</creatorcontrib><title>Obsolescence prediction: a Bayesian model</title><title>Procedia CIRP</title><description>It is critical for systems or products to deal with obsolescence and diminishing manufacturing sources and material shortages (DMSMS) of their parts. Any obsolescence or DMSMS may become a show-stopper impacting the global system. This paper proposes a model of the propagation of obsolescence/DMSMS throughout the system. It is established upon on the system architecture, where the dependencies (functional or structural) among system components are analyzed. Gathering the data from the market, the model predicts the impact of an obsolescence/DMSMS considering the uncertainties, which are further quantified by mitigation costs and delay. The paper presents the application in a study case originated from the car industry.</description><subject>Chemical and Process Engineering</subject><subject>DMSMS</subject><subject>Engineering Sciences</subject><subject>Mitigation</subject><subject>Obsolescence</subject><subject>Prediction</subject><issn>2212-8271</issn><issn>2212-8271</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWGq_gYe99rDrTJJNsh6EWtQKhV70HNL8wZRttySl0G_vLiviybnMMLz34P0IuUeoEFA87Kpj6mxMFQVUFdAKmLwiE0qRlopKvP5z35JZzjvoR3JgSCdkvtnmrvXZ-oP1xTF5F-0pdofHwhTP5uJzNIdi3znf3pGbYNrsZz97Sj5fXz6Wq3K9eXtfLtal5aw5lQ2idDUXEiVTZosWGNRBGSEFV8CVwKCaYJvaMMXsFkVgvhHC1RgYOGPZlMzH3C_T6mOKe5MuujNRrxZrPfwAG1ojZ2fstXzU2tTlnHz4NSDogY7e6ZGOHuhooLqn09ueRpvve5yjTzrbOABwMXl70q6L_wd8Aw96bKc</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Zolghadri, Marc</creator><creator>Addouche, Sid-Ali</creator><creator>Boissie, Kevin</creator><creator>Richard, Daniel</creator><general>Elsevier B.V</general><general>ELSEVIER</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-4088-6526</orcidid><orcidid>https://orcid.org/0000-0002-0377-2271</orcidid></search><sort><creationdate>2018</creationdate><title>Obsolescence prediction: a Bayesian model</title><author>Zolghadri, Marc ; Addouche, Sid-Ali ; Boissie, Kevin ; Richard, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c439t-9117d54671738ab1c0305f8a6764804861f89fc95a383cb16f3e966d51f30dac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Chemical and Process Engineering</topic><topic>DMSMS</topic><topic>Engineering Sciences</topic><topic>Mitigation</topic><topic>Obsolescence</topic><topic>Prediction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zolghadri, Marc</creatorcontrib><creatorcontrib>Addouche, Sid-Ali</creatorcontrib><creatorcontrib>Boissie, Kevin</creatorcontrib><creatorcontrib>Richard, Daniel</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Procedia CIRP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zolghadri, Marc</au><au>Addouche, Sid-Ali</au><au>Boissie, Kevin</au><au>Richard, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Obsolescence prediction: a Bayesian model</atitle><jtitle>Procedia CIRP</jtitle><date>2018</date><risdate>2018</risdate><volume>70</volume><spage>392</spage><epage>397</epage><pages>392-397</pages><issn>2212-8271</issn><eissn>2212-8271</eissn><abstract>It is critical for systems or products to deal with obsolescence and diminishing manufacturing sources and material shortages (DMSMS) of their parts. Any obsolescence or DMSMS may become a show-stopper impacting the global system. This paper proposes a model of the propagation of obsolescence/DMSMS throughout the system. It is established upon on the system architecture, where the dependencies (functional or structural) among system components are analyzed. Gathering the data from the market, the model predicts the impact of an obsolescence/DMSMS considering the uncertainties, which are further quantified by mitigation costs and delay. The paper presents the application in a study case originated from the car industry.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.procir.2018.02.037</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-4088-6526</orcidid><orcidid>https://orcid.org/0000-0002-0377-2271</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2212-8271 |
ispartof | Procedia CIRP, 2018, Vol.70, p.392-397 |
issn | 2212-8271 2212-8271 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01925143v1 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Chemical and Process Engineering DMSMS Engineering Sciences Mitigation Obsolescence Prediction |
title | Obsolescence prediction: a Bayesian model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T15%3A09%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Obsolescence%20prediction:%20a%20Bayesian%20model&rft.jtitle=Procedia%20CIRP&rft.au=Zolghadri,%20Marc&rft.date=2018&rft.volume=70&rft.spage=392&rft.epage=397&rft.pages=392-397&rft.issn=2212-8271&rft.eissn=2212-8271&rft_id=info:doi/10.1016/j.procir.2018.02.037&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01925143v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_els_id=S2212827118303354&rfr_iscdi=true |