Crystallization behavior of polypropylene/graphene nanoplatelets composites

Interest in graphite fillers has grown since the separation of graphene from graphite by micromechanical cleavage. The object of the article is to understand the influence of graphene nanoplatelets (GNPs) with different sizes on the crystallization behavior of a polyolefin matrix such as polypropyle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Polymer crystallization 2018-10, Vol.1 (3), p.n/a
Hauptverfasser: Beuguel, Quentin, Boyer, Séverine A. E., Settipani, Daniel, Monge, Gabriel, Haudin, Jean‐Marc, Vergnes, Bruno, Peuvrel‐Disdier, Edith
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 3
container_start_page
container_title Polymer crystallization
container_volume 1
creator Beuguel, Quentin
Boyer, Séverine A. E.
Settipani, Daniel
Monge, Gabriel
Haudin, Jean‐Marc
Vergnes, Bruno
Peuvrel‐Disdier, Edith
description Interest in graphite fillers has grown since the separation of graphene from graphite by micromechanical cleavage. The object of the article is to understand the influence of graphene nanoplatelets (GNPs) with different sizes on the crystallization behavior of a polyolefin matrix such as polypropylene (PP), after elaboration by melt mixing and compression molding. Composites with volume fractions of graphene nanoplatelets ranging from 0.3 to 2 vol% were prepared. The particle dispersion states in the composites were characterized at different scales using Scanning and Transmission Electron Microscopies (SEM and TEM). Polypropylene crystallization and orientation were investigated using optical microscopy, Differential Scanning Calorimetry (DSC) and X‐ray diffraction. This article discusses the strong acceleration of crystallization kinetics because of the presence of GNPs. The micrometric flake‐shaped GNPs act as nucleating agent and induce an epitaxial growth of alpha (α) crystalline phase of PP. The nucleating effect is related to the surface of the particles available for heterogeneous nucleation. Radial spherulitic growths are observed from the smallest micrometric particles. The coarsest GNPs, easily oriented by flow, favor PP transcrystallinity, in such a way that (010) plane of PP is parallel to (001) plane of graphene nanoplatelets. The effect of microscale aggregated graphenes (GNPs) on polypropylene crystallization is shown. The microscale particles clearly affect the nucleation step. The nucleation efficiency is linked to the surface developed by the microscale GNP particles. The smaller the size of the GNP particles is, the larger the number of nuclei and the smaller the spherulite. The flow orientates microscale anisotropic particles (flakes) which results in transcrystallinity, (010) plane of PP parallel to (001) plane of GNPs.
doi_str_mv 10.1002/pcr2.10024
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01923597v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2381984687</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4084-ee2360629d3ba7d0356b5eb67fb408dcca2afeae54c2f87e2374d30e13554ded3</originalsourceid><addsrcrecordid>eNp9kE9Lw0AQxRdRsNRe_AQBTwqx-y_Z5FiCWrGgiJ6XTTKxKdvsupsq8dO7bUQ8eZrHzG8eMw-hc4KvCcZ0bitHD4ofoQlNBItFSvLjP_oUzbzfYIxJljKaiwl6KNzge6V1-6X61nRRCWv10RoXmSayRg_WGTto6GD-5pRdBxF1qjNWqx409D6qzNYa3_bgz9BJo7SH2U-dotfbm5diGa8e7-6LxSquOM54DEBZilOa16xUosYsScsEylQ0ZZjXVaWoakBBwivaZCLQgtcMA2FJwmuo2RRdjr5rpaV17Va5QRrVyuViJfc9THLKklx8kMBejGz4430Hvpcbs3NdOE9SlpE842kmAnU1UpUz3jtofm0JlvtE5T7bg-IBJiP82WoY_iHlU_FMx51vBI98BA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2381984687</pqid></control><display><type>article</type><title>Crystallization behavior of polypropylene/graphene nanoplatelets composites</title><source>Wiley-Blackwell Journals</source><creator>Beuguel, Quentin ; Boyer, Séverine A. E. ; Settipani, Daniel ; Monge, Gabriel ; Haudin, Jean‐Marc ; Vergnes, Bruno ; Peuvrel‐Disdier, Edith</creator><creatorcontrib>Beuguel, Quentin ; Boyer, Séverine A. E. ; Settipani, Daniel ; Monge, Gabriel ; Haudin, Jean‐Marc ; Vergnes, Bruno ; Peuvrel‐Disdier, Edith</creatorcontrib><description>Interest in graphite fillers has grown since the separation of graphene from graphite by micromechanical cleavage. The object of the article is to understand the influence of graphene nanoplatelets (GNPs) with different sizes on the crystallization behavior of a polyolefin matrix such as polypropylene (PP), after elaboration by melt mixing and compression molding. Composites with volume fractions of graphene nanoplatelets ranging from 0.3 to 2 vol% were prepared. The particle dispersion states in the composites were characterized at different scales using Scanning and Transmission Electron Microscopies (SEM and TEM). Polypropylene crystallization and orientation were investigated using optical microscopy, Differential Scanning Calorimetry (DSC) and X‐ray diffraction. This article discusses the strong acceleration of crystallization kinetics because of the presence of GNPs. The micrometric flake‐shaped GNPs act as nucleating agent and induce an epitaxial growth of alpha (α) crystalline phase of PP. The nucleating effect is related to the surface of the particles available for heterogeneous nucleation. Radial spherulitic growths are observed from the smallest micrometric particles. The coarsest GNPs, easily oriented by flow, favor PP transcrystallinity, in such a way that (010) plane of PP is parallel to (001) plane of graphene nanoplatelets. The effect of microscale aggregated graphenes (GNPs) on polypropylene crystallization is shown. The microscale particles clearly affect the nucleation step. The nucleation efficiency is linked to the surface developed by the microscale GNP particles. The smaller the size of the GNP particles is, the larger the number of nuclei and the smaller the spherulite. The flow orientates microscale anisotropic particles (flakes) which results in transcrystallinity, (010) plane of PP parallel to (001) plane of GNPs.</description><identifier>ISSN: 2573-7619</identifier><identifier>EISSN: 2573-7619</identifier><identifier>DOI: 10.1002/pcr2.10024</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>Chemical Physics ; Condensed Matter ; Crystallization ; Engineering Sciences ; Epitaxial growth ; Fillers ; Graphene ; Graphite ; Materials ; Materials Science ; nanocomposites ; Nucleation ; Optical microscopy ; Particulate composites ; Physics ; Polymer matrix composites ; Polyolefins ; Polypropylene ; Pressure molding</subject><ispartof>Polymer crystallization, 2018-10, Vol.1 (3), p.n/a</ispartof><rights>2018 Wiley Periodicals, Inc.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4084-ee2360629d3ba7d0356b5eb67fb408dcca2afeae54c2f87e2374d30e13554ded3</citedby><cites>FETCH-LOGICAL-c4084-ee2360629d3ba7d0356b5eb67fb408dcca2afeae54c2f87e2374d30e13554ded3</cites><orcidid>0000-0002-3271-3465 ; 0000-0001-9464-5990 ; 0000-0001-8963-9756 ; 0000-0003-2209-0388 ; 0000-0003-4052-2981</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fpcr2.10024$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fpcr2.10024$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01923597$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Beuguel, Quentin</creatorcontrib><creatorcontrib>Boyer, Séverine A. E.</creatorcontrib><creatorcontrib>Settipani, Daniel</creatorcontrib><creatorcontrib>Monge, Gabriel</creatorcontrib><creatorcontrib>Haudin, Jean‐Marc</creatorcontrib><creatorcontrib>Vergnes, Bruno</creatorcontrib><creatorcontrib>Peuvrel‐Disdier, Edith</creatorcontrib><title>Crystallization behavior of polypropylene/graphene nanoplatelets composites</title><title>Polymer crystallization</title><description>Interest in graphite fillers has grown since the separation of graphene from graphite by micromechanical cleavage. The object of the article is to understand the influence of graphene nanoplatelets (GNPs) with different sizes on the crystallization behavior of a polyolefin matrix such as polypropylene (PP), after elaboration by melt mixing and compression molding. Composites with volume fractions of graphene nanoplatelets ranging from 0.3 to 2 vol% were prepared. The particle dispersion states in the composites were characterized at different scales using Scanning and Transmission Electron Microscopies (SEM and TEM). Polypropylene crystallization and orientation were investigated using optical microscopy, Differential Scanning Calorimetry (DSC) and X‐ray diffraction. This article discusses the strong acceleration of crystallization kinetics because of the presence of GNPs. The micrometric flake‐shaped GNPs act as nucleating agent and induce an epitaxial growth of alpha (α) crystalline phase of PP. The nucleating effect is related to the surface of the particles available for heterogeneous nucleation. Radial spherulitic growths are observed from the smallest micrometric particles. The coarsest GNPs, easily oriented by flow, favor PP transcrystallinity, in such a way that (010) plane of PP is parallel to (001) plane of graphene nanoplatelets. The effect of microscale aggregated graphenes (GNPs) on polypropylene crystallization is shown. The microscale particles clearly affect the nucleation step. The nucleation efficiency is linked to the surface developed by the microscale GNP particles. The smaller the size of the GNP particles is, the larger the number of nuclei and the smaller the spherulite. The flow orientates microscale anisotropic particles (flakes) which results in transcrystallinity, (010) plane of PP parallel to (001) plane of GNPs.</description><subject>Chemical Physics</subject><subject>Condensed Matter</subject><subject>Crystallization</subject><subject>Engineering Sciences</subject><subject>Epitaxial growth</subject><subject>Fillers</subject><subject>Graphene</subject><subject>Graphite</subject><subject>Materials</subject><subject>Materials Science</subject><subject>nanocomposites</subject><subject>Nucleation</subject><subject>Optical microscopy</subject><subject>Particulate composites</subject><subject>Physics</subject><subject>Polymer matrix composites</subject><subject>Polyolefins</subject><subject>Polypropylene</subject><subject>Pressure molding</subject><issn>2573-7619</issn><issn>2573-7619</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE9Lw0AQxRdRsNRe_AQBTwqx-y_Z5FiCWrGgiJ6XTTKxKdvsupsq8dO7bUQ8eZrHzG8eMw-hc4KvCcZ0bitHD4ofoQlNBItFSvLjP_oUzbzfYIxJljKaiwl6KNzge6V1-6X61nRRCWv10RoXmSayRg_WGTto6GD-5pRdBxF1qjNWqx409D6qzNYa3_bgz9BJo7SH2U-dotfbm5diGa8e7-6LxSquOM54DEBZilOa16xUosYsScsEylQ0ZZjXVaWoakBBwivaZCLQgtcMA2FJwmuo2RRdjr5rpaV17Va5QRrVyuViJfc9THLKklx8kMBejGz4430Hvpcbs3NdOE9SlpE842kmAnU1UpUz3jtofm0JlvtE5T7bg-IBJiP82WoY_iHlU_FMx51vBI98BA</recordid><startdate>201810</startdate><enddate>201810</enddate><creator>Beuguel, Quentin</creator><creator>Boyer, Séverine A. E.</creator><creator>Settipani, Daniel</creator><creator>Monge, Gabriel</creator><creator>Haudin, Jean‐Marc</creator><creator>Vergnes, Bruno</creator><creator>Peuvrel‐Disdier, Edith</creator><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><general>Wiley</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-3271-3465</orcidid><orcidid>https://orcid.org/0000-0001-9464-5990</orcidid><orcidid>https://orcid.org/0000-0001-8963-9756</orcidid><orcidid>https://orcid.org/0000-0003-2209-0388</orcidid><orcidid>https://orcid.org/0000-0003-4052-2981</orcidid></search><sort><creationdate>201810</creationdate><title>Crystallization behavior of polypropylene/graphene nanoplatelets composites</title><author>Beuguel, Quentin ; Boyer, Séverine A. E. ; Settipani, Daniel ; Monge, Gabriel ; Haudin, Jean‐Marc ; Vergnes, Bruno ; Peuvrel‐Disdier, Edith</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4084-ee2360629d3ba7d0356b5eb67fb408dcca2afeae54c2f87e2374d30e13554ded3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Chemical Physics</topic><topic>Condensed Matter</topic><topic>Crystallization</topic><topic>Engineering Sciences</topic><topic>Epitaxial growth</topic><topic>Fillers</topic><topic>Graphene</topic><topic>Graphite</topic><topic>Materials</topic><topic>Materials Science</topic><topic>nanocomposites</topic><topic>Nucleation</topic><topic>Optical microscopy</topic><topic>Particulate composites</topic><topic>Physics</topic><topic>Polymer matrix composites</topic><topic>Polyolefins</topic><topic>Polypropylene</topic><topic>Pressure molding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beuguel, Quentin</creatorcontrib><creatorcontrib>Boyer, Séverine A. E.</creatorcontrib><creatorcontrib>Settipani, Daniel</creatorcontrib><creatorcontrib>Monge, Gabriel</creatorcontrib><creatorcontrib>Haudin, Jean‐Marc</creatorcontrib><creatorcontrib>Vergnes, Bruno</creatorcontrib><creatorcontrib>Peuvrel‐Disdier, Edith</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Polymer crystallization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beuguel, Quentin</au><au>Boyer, Séverine A. E.</au><au>Settipani, Daniel</au><au>Monge, Gabriel</au><au>Haudin, Jean‐Marc</au><au>Vergnes, Bruno</au><au>Peuvrel‐Disdier, Edith</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crystallization behavior of polypropylene/graphene nanoplatelets composites</atitle><jtitle>Polymer crystallization</jtitle><date>2018-10</date><risdate>2018</risdate><volume>1</volume><issue>3</issue><epage>n/a</epage><issn>2573-7619</issn><eissn>2573-7619</eissn><abstract>Interest in graphite fillers has grown since the separation of graphene from graphite by micromechanical cleavage. The object of the article is to understand the influence of graphene nanoplatelets (GNPs) with different sizes on the crystallization behavior of a polyolefin matrix such as polypropylene (PP), after elaboration by melt mixing and compression molding. Composites with volume fractions of graphene nanoplatelets ranging from 0.3 to 2 vol% were prepared. The particle dispersion states in the composites were characterized at different scales using Scanning and Transmission Electron Microscopies (SEM and TEM). Polypropylene crystallization and orientation were investigated using optical microscopy, Differential Scanning Calorimetry (DSC) and X‐ray diffraction. This article discusses the strong acceleration of crystallization kinetics because of the presence of GNPs. The micrometric flake‐shaped GNPs act as nucleating agent and induce an epitaxial growth of alpha (α) crystalline phase of PP. The nucleating effect is related to the surface of the particles available for heterogeneous nucleation. Radial spherulitic growths are observed from the smallest micrometric particles. The coarsest GNPs, easily oriented by flow, favor PP transcrystallinity, in such a way that (010) plane of PP is parallel to (001) plane of graphene nanoplatelets. The effect of microscale aggregated graphenes (GNPs) on polypropylene crystallization is shown. The microscale particles clearly affect the nucleation step. The nucleation efficiency is linked to the surface developed by the microscale GNP particles. The smaller the size of the GNP particles is, the larger the number of nuclei and the smaller the spherulite. The flow orientates microscale anisotropic particles (flakes) which results in transcrystallinity, (010) plane of PP parallel to (001) plane of GNPs.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/pcr2.10024</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3271-3465</orcidid><orcidid>https://orcid.org/0000-0001-9464-5990</orcidid><orcidid>https://orcid.org/0000-0001-8963-9756</orcidid><orcidid>https://orcid.org/0000-0003-2209-0388</orcidid><orcidid>https://orcid.org/0000-0003-4052-2981</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2573-7619
ispartof Polymer crystallization, 2018-10, Vol.1 (3), p.n/a
issn 2573-7619
2573-7619
language eng
recordid cdi_hal_primary_oai_HAL_hal_01923597v1
source Wiley-Blackwell Journals
subjects Chemical Physics
Condensed Matter
Crystallization
Engineering Sciences
Epitaxial growth
Fillers
Graphene
Graphite
Materials
Materials Science
nanocomposites
Nucleation
Optical microscopy
Particulate composites
Physics
Polymer matrix composites
Polyolefins
Polypropylene
Pressure molding
title Crystallization behavior of polypropylene/graphene nanoplatelets composites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T08%3A29%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crystallization%20behavior%20of%20polypropylene/graphene%20nanoplatelets%20composites&rft.jtitle=Polymer%20crystallization&rft.au=Beuguel,%20Quentin&rft.date=2018-10&rft.volume=1&rft.issue=3&rft.epage=n/a&rft.issn=2573-7619&rft.eissn=2573-7619&rft_id=info:doi/10.1002/pcr2.10024&rft_dat=%3Cproquest_hal_p%3E2381984687%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2381984687&rft_id=info:pmid/&rfr_iscdi=true