Comparison of single-ion-conductor block-copolymer electrolytes with Polystyrene-TFSI and Polymethacrylate-TFSI structural blocks

A new family of single-ion-conductor block-copolymer electrolytes (BCEs), comprising poly(ethylene oxide) (PEO) as conducting block and poly(styrene sulfonyl(trifluoromethanesulfonyl) imide of lithium) (PSTFSI) as structural block, was developed recently. To evaluate the influence of the structural...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrochimica acta 2018-04, Vol.269, p.250-261
Hauptverfasser: Devaux, Didier, Liénafa, Livie, Beaudoin, Emmanuel, Maria, Sébastien, Phan, Trang N.T., Gigmes, Didier, Giroud, Emmanuelle, Davidson, Patrick, Bouchet, Renaud
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 261
container_issue
container_start_page 250
container_title Electrochimica acta
container_volume 269
creator Devaux, Didier
Liénafa, Livie
Beaudoin, Emmanuel
Maria, Sébastien
Phan, Trang N.T.
Gigmes, Didier
Giroud, Emmanuelle
Davidson, Patrick
Bouchet, Renaud
description A new family of single-ion-conductor block-copolymer electrolytes (BCEs), comprising poly(ethylene oxide) (PEO) as conducting block and poly(styrene sulfonyl(trifluoromethanesulfonyl) imide of lithium) (PSTFSI) as structural block, was developed recently. To evaluate the influence of the structural blockon the physico-chemical and electrochemical properties, we compare two single-ion-conductor BCE families with structural blocks made of either PSTFSI or poly(3-sulfonyl(trifluoromethanesulfonyl) imide propyl methacrylate of lithium) (PMATFSI). Small-angle X-ray scattering revealed that at temperatures lower than the PEO block melting temperature, the morphology of both families is lamellar whereas, at higher temperatures, the electrolytes are in a disordered state. Both electrolyte families present an ionic conductivity maximum for some weight fraction of the structural block (wBTFSI), named BTFSI. For wBTFSI > 0.17, the ionic conductivity of the PMATFSI-based electrolytes is larger than that of the PSTFSI-based electrolytes by at least a factor of two. Based on a detailed transport analysis, we show that the strong increase of the glass transition temperature is the main factor limiting the ionic conductivity. We also interpret the conductivity maximum of the PSTFSI-based electrolytes by a limitation in available free charges for wPSTFSI > 0.17 while the polymer dynamics slows down. The optimization of the ionic transport in this type of single-ion-conductor BCE requires promoting the compatibility of the Li+-bearing structural block with the conducting block.
doi_str_mv 10.1016/j.electacta.2018.02.142
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01923076v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S001346861830447X</els_id><sourcerecordid>2069500616</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-75dd3984ffb565508aa72d4e3e3c679d7971d745137cecb39fd54a387e7b51663</originalsourceid><addsrcrecordid>eNqFkUFvGyEQhVHVSHXT_Ias1FMPuxmWBXaPltUkliwlUpMzwjBb464XF3AiH_PPg7NRrpGQ0BvefAM8Qi4pVBSouNpWOKBJOq-qBtpWUFe0qb-QGW0lK1nLu69kBkBZ2YhWfCPfY9wCgBQSZuRl4Xd7HVz0Y-H7Irrx74Cl82Np_GgPJvlQrAdv_mW998Nxh6F4mxeySBiLZ5c2xX0WMR0Djlg-XP9ZFnq0b8Udpo024Tjo9H4SU8jUQ9DDxI0_yFmvh4gX7_s5ebz-_bC4LVd3N8vFfFWaRrBUSm4t69qm79dccA6t1rK2DTJkRsjOyk5SKxtOmTRo1qzrLW80ayXKNadCsHPya-Ju9KD2we10OCqvnbqdr9SpBrSrWf6WJ5q9PyfvPvj_B4xJbf0hjPl6qgbRcQBBT0Q5uUzwMQbsP7AU1CkbtVUf2ahTNgpqlbPJnfOpE_ODnxwGFY3D0aB1IfuV9e5Txiuon53y</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2069500616</pqid></control><display><type>article</type><title>Comparison of single-ion-conductor block-copolymer electrolytes with Polystyrene-TFSI and Polymethacrylate-TFSI structural blocks</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Devaux, Didier ; Liénafa, Livie ; Beaudoin, Emmanuel ; Maria, Sébastien ; Phan, Trang N.T. ; Gigmes, Didier ; Giroud, Emmanuelle ; Davidson, Patrick ; Bouchet, Renaud</creator><creatorcontrib>Devaux, Didier ; Liénafa, Livie ; Beaudoin, Emmanuel ; Maria, Sébastien ; Phan, Trang N.T. ; Gigmes, Didier ; Giroud, Emmanuelle ; Davidson, Patrick ; Bouchet, Renaud</creatorcontrib><description>A new family of single-ion-conductor block-copolymer electrolytes (BCEs), comprising poly(ethylene oxide) (PEO) as conducting block and poly(styrene sulfonyl(trifluoromethanesulfonyl) imide of lithium) (PSTFSI) as structural block, was developed recently. To evaluate the influence of the structural blockon the physico-chemical and electrochemical properties, we compare two single-ion-conductor BCE families with structural blocks made of either PSTFSI or poly(3-sulfonyl(trifluoromethanesulfonyl) imide propyl methacrylate of lithium) (PMATFSI). Small-angle X-ray scattering revealed that at temperatures lower than the PEO block melting temperature, the morphology of both families is lamellar whereas, at higher temperatures, the electrolytes are in a disordered state. Both electrolyte families present an ionic conductivity maximum for some weight fraction of the structural block (wBTFSI), named BTFSI. For wBTFSI &gt; 0.17, the ionic conductivity of the PMATFSI-based electrolytes is larger than that of the PSTFSI-based electrolytes by at least a factor of two. Based on a detailed transport analysis, we show that the strong increase of the glass transition temperature is the main factor limiting the ionic conductivity. We also interpret the conductivity maximum of the PSTFSI-based electrolytes by a limitation in available free charges for wPSTFSI &gt; 0.17 while the polymer dynamics slows down. The optimization of the ionic transport in this type of single-ion-conductor BCE requires promoting the compatibility of the Li+-bearing structural block with the conducting block.</description><identifier>ISSN: 0013-4686</identifier><identifier>EISSN: 1873-3859</identifier><identifier>DOI: 10.1016/j.electacta.2018.02.142</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Batteries ; Block copolymers ; Chemical Sciences ; Conduction ; Conductors ; Copolymers ; Electrochemical analysis ; Electrolytes ; Ethylene oxide ; Glass transition temperature ; Ion currents ; Lithium ; Lithium battery ; Material chemistry ; Melt temperature ; Morphology ; Organic chemistry ; PEO ; Polymer electrolyte ; Polymers ; Polymethyl methacrylate ; Polystyrene resins ; Single-ion conductor ; Small angle X ray scattering ; Transport ; VTF</subject><ispartof>Electrochimica acta, 2018-04, Vol.269, p.250-261</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright Elsevier BV Apr 10, 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-75dd3984ffb565508aa72d4e3e3c679d7971d745137cecb39fd54a387e7b51663</citedby><cites>FETCH-LOGICAL-c463t-75dd3984ffb565508aa72d4e3e3c679d7971d745137cecb39fd54a387e7b51663</cites><orcidid>0000-0002-8833-8393 ; 0000-0002-1964-0556 ; 0000-0002-1363-6062 ; 0000-0002-4040-2253</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S001346861830447X$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01923076$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Devaux, Didier</creatorcontrib><creatorcontrib>Liénafa, Livie</creatorcontrib><creatorcontrib>Beaudoin, Emmanuel</creatorcontrib><creatorcontrib>Maria, Sébastien</creatorcontrib><creatorcontrib>Phan, Trang N.T.</creatorcontrib><creatorcontrib>Gigmes, Didier</creatorcontrib><creatorcontrib>Giroud, Emmanuelle</creatorcontrib><creatorcontrib>Davidson, Patrick</creatorcontrib><creatorcontrib>Bouchet, Renaud</creatorcontrib><title>Comparison of single-ion-conductor block-copolymer electrolytes with Polystyrene-TFSI and Polymethacrylate-TFSI structural blocks</title><title>Electrochimica acta</title><description>A new family of single-ion-conductor block-copolymer electrolytes (BCEs), comprising poly(ethylene oxide) (PEO) as conducting block and poly(styrene sulfonyl(trifluoromethanesulfonyl) imide of lithium) (PSTFSI) as structural block, was developed recently. To evaluate the influence of the structural blockon the physico-chemical and electrochemical properties, we compare two single-ion-conductor BCE families with structural blocks made of either PSTFSI or poly(3-sulfonyl(trifluoromethanesulfonyl) imide propyl methacrylate of lithium) (PMATFSI). Small-angle X-ray scattering revealed that at temperatures lower than the PEO block melting temperature, the morphology of both families is lamellar whereas, at higher temperatures, the electrolytes are in a disordered state. Both electrolyte families present an ionic conductivity maximum for some weight fraction of the structural block (wBTFSI), named BTFSI. For wBTFSI &gt; 0.17, the ionic conductivity of the PMATFSI-based electrolytes is larger than that of the PSTFSI-based electrolytes by at least a factor of two. Based on a detailed transport analysis, we show that the strong increase of the glass transition temperature is the main factor limiting the ionic conductivity. We also interpret the conductivity maximum of the PSTFSI-based electrolytes by a limitation in available free charges for wPSTFSI &gt; 0.17 while the polymer dynamics slows down. The optimization of the ionic transport in this type of single-ion-conductor BCE requires promoting the compatibility of the Li+-bearing structural block with the conducting block.</description><subject>Batteries</subject><subject>Block copolymers</subject><subject>Chemical Sciences</subject><subject>Conduction</subject><subject>Conductors</subject><subject>Copolymers</subject><subject>Electrochemical analysis</subject><subject>Electrolytes</subject><subject>Ethylene oxide</subject><subject>Glass transition temperature</subject><subject>Ion currents</subject><subject>Lithium</subject><subject>Lithium battery</subject><subject>Material chemistry</subject><subject>Melt temperature</subject><subject>Morphology</subject><subject>Organic chemistry</subject><subject>PEO</subject><subject>Polymer electrolyte</subject><subject>Polymers</subject><subject>Polymethyl methacrylate</subject><subject>Polystyrene resins</subject><subject>Single-ion conductor</subject><subject>Small angle X ray scattering</subject><subject>Transport</subject><subject>VTF</subject><issn>0013-4686</issn><issn>1873-3859</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkUFvGyEQhVHVSHXT_Ias1FMPuxmWBXaPltUkliwlUpMzwjBb464XF3AiH_PPg7NRrpGQ0BvefAM8Qi4pVBSouNpWOKBJOq-qBtpWUFe0qb-QGW0lK1nLu69kBkBZ2YhWfCPfY9wCgBQSZuRl4Xd7HVz0Y-H7Irrx74Cl82Np_GgPJvlQrAdv_mW998Nxh6F4mxeySBiLZ5c2xX0WMR0Djlg-XP9ZFnq0b8Udpo024Tjo9H4SU8jUQ9DDxI0_yFmvh4gX7_s5ebz-_bC4LVd3N8vFfFWaRrBUSm4t69qm79dccA6t1rK2DTJkRsjOyk5SKxtOmTRo1qzrLW80ayXKNadCsHPya-Ju9KD2we10OCqvnbqdr9SpBrSrWf6WJ5q9PyfvPvj_B4xJbf0hjPl6qgbRcQBBT0Q5uUzwMQbsP7AU1CkbtVUf2ahTNgpqlbPJnfOpE_ODnxwGFY3D0aB1IfuV9e5Txiuon53y</recordid><startdate>20180410</startdate><enddate>20180410</enddate><creator>Devaux, Didier</creator><creator>Liénafa, Livie</creator><creator>Beaudoin, Emmanuel</creator><creator>Maria, Sébastien</creator><creator>Phan, Trang N.T.</creator><creator>Gigmes, Didier</creator><creator>Giroud, Emmanuelle</creator><creator>Davidson, Patrick</creator><creator>Bouchet, Renaud</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-8833-8393</orcidid><orcidid>https://orcid.org/0000-0002-1964-0556</orcidid><orcidid>https://orcid.org/0000-0002-1363-6062</orcidid><orcidid>https://orcid.org/0000-0002-4040-2253</orcidid></search><sort><creationdate>20180410</creationdate><title>Comparison of single-ion-conductor block-copolymer electrolytes with Polystyrene-TFSI and Polymethacrylate-TFSI structural blocks</title><author>Devaux, Didier ; Liénafa, Livie ; Beaudoin, Emmanuel ; Maria, Sébastien ; Phan, Trang N.T. ; Gigmes, Didier ; Giroud, Emmanuelle ; Davidson, Patrick ; Bouchet, Renaud</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-75dd3984ffb565508aa72d4e3e3c679d7971d745137cecb39fd54a387e7b51663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Batteries</topic><topic>Block copolymers</topic><topic>Chemical Sciences</topic><topic>Conduction</topic><topic>Conductors</topic><topic>Copolymers</topic><topic>Electrochemical analysis</topic><topic>Electrolytes</topic><topic>Ethylene oxide</topic><topic>Glass transition temperature</topic><topic>Ion currents</topic><topic>Lithium</topic><topic>Lithium battery</topic><topic>Material chemistry</topic><topic>Melt temperature</topic><topic>Morphology</topic><topic>Organic chemistry</topic><topic>PEO</topic><topic>Polymer electrolyte</topic><topic>Polymers</topic><topic>Polymethyl methacrylate</topic><topic>Polystyrene resins</topic><topic>Single-ion conductor</topic><topic>Small angle X ray scattering</topic><topic>Transport</topic><topic>VTF</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Devaux, Didier</creatorcontrib><creatorcontrib>Liénafa, Livie</creatorcontrib><creatorcontrib>Beaudoin, Emmanuel</creatorcontrib><creatorcontrib>Maria, Sébastien</creatorcontrib><creatorcontrib>Phan, Trang N.T.</creatorcontrib><creatorcontrib>Gigmes, Didier</creatorcontrib><creatorcontrib>Giroud, Emmanuelle</creatorcontrib><creatorcontrib>Davidson, Patrick</creatorcontrib><creatorcontrib>Bouchet, Renaud</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Electrochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Devaux, Didier</au><au>Liénafa, Livie</au><au>Beaudoin, Emmanuel</au><au>Maria, Sébastien</au><au>Phan, Trang N.T.</au><au>Gigmes, Didier</au><au>Giroud, Emmanuelle</au><au>Davidson, Patrick</au><au>Bouchet, Renaud</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of single-ion-conductor block-copolymer electrolytes with Polystyrene-TFSI and Polymethacrylate-TFSI structural blocks</atitle><jtitle>Electrochimica acta</jtitle><date>2018-04-10</date><risdate>2018</risdate><volume>269</volume><spage>250</spage><epage>261</epage><pages>250-261</pages><issn>0013-4686</issn><eissn>1873-3859</eissn><abstract>A new family of single-ion-conductor block-copolymer electrolytes (BCEs), comprising poly(ethylene oxide) (PEO) as conducting block and poly(styrene sulfonyl(trifluoromethanesulfonyl) imide of lithium) (PSTFSI) as structural block, was developed recently. To evaluate the influence of the structural blockon the physico-chemical and electrochemical properties, we compare two single-ion-conductor BCE families with structural blocks made of either PSTFSI or poly(3-sulfonyl(trifluoromethanesulfonyl) imide propyl methacrylate of lithium) (PMATFSI). Small-angle X-ray scattering revealed that at temperatures lower than the PEO block melting temperature, the morphology of both families is lamellar whereas, at higher temperatures, the electrolytes are in a disordered state. Both electrolyte families present an ionic conductivity maximum for some weight fraction of the structural block (wBTFSI), named BTFSI. For wBTFSI &gt; 0.17, the ionic conductivity of the PMATFSI-based electrolytes is larger than that of the PSTFSI-based electrolytes by at least a factor of two. Based on a detailed transport analysis, we show that the strong increase of the glass transition temperature is the main factor limiting the ionic conductivity. We also interpret the conductivity maximum of the PSTFSI-based electrolytes by a limitation in available free charges for wPSTFSI &gt; 0.17 while the polymer dynamics slows down. The optimization of the ionic transport in this type of single-ion-conductor BCE requires promoting the compatibility of the Li+-bearing structural block with the conducting block.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.electacta.2018.02.142</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8833-8393</orcidid><orcidid>https://orcid.org/0000-0002-1964-0556</orcidid><orcidid>https://orcid.org/0000-0002-1363-6062</orcidid><orcidid>https://orcid.org/0000-0002-4040-2253</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-4686
ispartof Electrochimica acta, 2018-04, Vol.269, p.250-261
issn 0013-4686
1873-3859
language eng
recordid cdi_hal_primary_oai_HAL_hal_01923076v1
source Elsevier ScienceDirect Journals Complete
subjects Batteries
Block copolymers
Chemical Sciences
Conduction
Conductors
Copolymers
Electrochemical analysis
Electrolytes
Ethylene oxide
Glass transition temperature
Ion currents
Lithium
Lithium battery
Material chemistry
Melt temperature
Morphology
Organic chemistry
PEO
Polymer electrolyte
Polymers
Polymethyl methacrylate
Polystyrene resins
Single-ion conductor
Small angle X ray scattering
Transport
VTF
title Comparison of single-ion-conductor block-copolymer electrolytes with Polystyrene-TFSI and Polymethacrylate-TFSI structural blocks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T18%3A40%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20single-ion-conductor%20block-copolymer%20electrolytes%20with%20Polystyrene-TFSI%20and%20Polymethacrylate-TFSI%20structural%20blocks&rft.jtitle=Electrochimica%20acta&rft.au=Devaux,%20Didier&rft.date=2018-04-10&rft.volume=269&rft.spage=250&rft.epage=261&rft.pages=250-261&rft.issn=0013-4686&rft.eissn=1873-3859&rft_id=info:doi/10.1016/j.electacta.2018.02.142&rft_dat=%3Cproquest_hal_p%3E2069500616%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2069500616&rft_id=info:pmid/&rft_els_id=S001346861830447X&rfr_iscdi=true