Integrated Bayesian Estimation of Intensity‐Duration‐Frequency Curves: Consolidation and Extensive Testing of a Method

Intensity‐duration‐frequency (IDF) curves are one of the most common rainfall statistical models used in hydrologic design and analysis projects. The uncertainties related to the elaboration of these IDF curves have nevertheless seldom been evaluated in the past. The article will recall the existing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water resources research 2018-10, Vol.54 (10), p.7459-7477
Hauptverfasser: Boukhelifa, M., Meddi, M., Gaume, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7477
container_issue 10
container_start_page 7459
container_title Water resources research
container_volume 54
creator Boukhelifa, M.
Meddi, M.
Gaume, E.
description Intensity‐duration‐frequency (IDF) curves are one of the most common rainfall statistical models used in hydrologic design and analysis projects. The uncertainties related to the elaboration of these IDF curves have nevertheless seldom been evaluated in the past. The article will recall the existing link between the IDF formulation and some properties of the rainfall series such as simple scaling and multifractal structure. Assuming that these properties are valid, the IDF curves formulation is then the product of a dimensionless (i.e., reduced) distribution function for the annual maximum rainfall intensities/depths and a duration‐dependent scaling factor. Its parameters can be evaluated in an integrated way (i.e., based on a unique pooled sample of peak intensities over a range of durations: from 15 min to 24 hr). The use of likelihood‐based Bayesian Markov chain Monte Carlo statistical inference methods for this evaluation provides consistent uncertainties for all the parameters of the IDF relation and for the corresponding rainfall quantiles. This methodology has been tested, via a local analysis, on a large data set of 48 rain gauge records, spread over the north central part of Algeria (25,000 km2), under various climatic regimes. The integrated approach is undoubtedly consistent with estimates from annual maximum rainfall fitted to single durations. Furthermore, credibility intervals are significantly reduced. Also, this integrated approach appears to be robust: Unlike the traditional method based single durations, it generally provides rational quantile estimates, even when short observed series are available. This is a significant advantage for engineering applications. Key Points The integrated Bayesian approach allows to reduce the uncertainties in rainfall quantiles estimates Robustness in the estimation of the IDF curves for short observed series More reliable and consistent estimation of the scaling factor than through traditional moment scaling analyses
doi_str_mv 10.1029/2018WR023366
format Article
fullrecord <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01920772v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2136248194</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3642-2c59e80ad2287af481bf4f3782b7fe22c9058b3f9e5cf809fa9653d315cc3ae93</originalsourceid><addsrcrecordid>eNp9kc9KxDAQxoMouK7efICAJ8Fq_rRN403rriusCMvKHkO2TbRSE03a1XryEXxGn8SsFfHkaYaP33wzwwfAPkbHGBF-QhDOFjNEKE3TDTDAPI4jxhndBAOEYhphytk22PH-ASEcJykbgLcr06g7JxtVwnPZKV9JA0e-qR5lU1kDrYZrwviq6T7fPy5a962HduzUc6tM0cG8dSvlT2Fujbd1VfaT0pRw9Po9ulJwroKnuVv7SXitmntb7oItLWuv9n7qENyOR_N8Ek1vLq_ys2kkaRqTiBQJVxmSJSEZkzrO8FLHmrKMLJlWhBQcJdmSaq6SQmeIa8nThJYUJ0VBpeJ0CA5733tZiycXPnOdsLISk7OpWGsIc4IYIysc2IOefXI2fOcb8WBbZ8J5gmCakrCdx4E66qnCWe-d0r-2GIl1EuJvEgGnPf5S1ar7lxWLWT4jNMkI_QLoiozh</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2136248194</pqid></control><display><type>article</type><title>Integrated Bayesian Estimation of Intensity‐Duration‐Frequency Curves: Consolidation and Extensive Testing of a Method</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library All Journals</source><creator>Boukhelifa, M. ; Meddi, M. ; Gaume, E.</creator><creatorcontrib>Boukhelifa, M. ; Meddi, M. ; Gaume, E.</creatorcontrib><description>Intensity‐duration‐frequency (IDF) curves are one of the most common rainfall statistical models used in hydrologic design and analysis projects. The uncertainties related to the elaboration of these IDF curves have nevertheless seldom been evaluated in the past. The article will recall the existing link between the IDF formulation and some properties of the rainfall series such as simple scaling and multifractal structure. Assuming that these properties are valid, the IDF curves formulation is then the product of a dimensionless (i.e., reduced) distribution function for the annual maximum rainfall intensities/depths and a duration‐dependent scaling factor. Its parameters can be evaluated in an integrated way (i.e., based on a unique pooled sample of peak intensities over a range of durations: from 15 min to 24 hr). The use of likelihood‐based Bayesian Markov chain Monte Carlo statistical inference methods for this evaluation provides consistent uncertainties for all the parameters of the IDF relation and for the corresponding rainfall quantiles. This methodology has been tested, via a local analysis, on a large data set of 48 rain gauge records, spread over the north central part of Algeria (25,000 km2), under various climatic regimes. The integrated approach is undoubtedly consistent with estimates from annual maximum rainfall fitted to single durations. Furthermore, credibility intervals are significantly reduced. Also, this integrated approach appears to be robust: Unlike the traditional method based single durations, it generally provides rational quantile estimates, even when short observed series are available. This is a significant advantage for engineering applications. Key Points The integrated Bayesian approach allows to reduce the uncertainties in rainfall quantiles estimates Robustness in the estimation of the IDF curves for short observed series More reliable and consistent estimation of the scaling factor than through traditional moment scaling analyses</description><identifier>ISSN: 0043-1397</identifier><identifier>EISSN: 1944-7973</identifier><identifier>DOI: 10.1029/2018WR023366</identifier><language>eng</language><publisher>Washington: John Wiley &amp; Sons, Inc</publisher><subject>Algeria ; Annual rainfall ; Bayesian analysis ; Computer simulation ; Distribution functions ; Duration ; Engineering Sciences ; Evaluation ; Hydrologic models ; Hydrology ; IDF curves ; Integrated approach ; Markov chains ; Mathematical models ; Maximum rainfall ; MCMC ; Monte Carlo simulation ; Parameter uncertainty ; Parameters ; Probability theory ; Properties ; Quantiles ; Rain ; Rain gauges ; Rainfall ; Rainfall intensity ; Scaling ; Scaling factors ; short series ; simple scaling ; Statistical analysis ; Statistical inference ; Statistical methods ; Statistical models ; Test procedures ; uncertainties ; Uncertainty analysis</subject><ispartof>Water resources research, 2018-10, Vol.54 (10), p.7459-7477</ispartof><rights>2018. American Geophysical Union. All Rights Reserved.</rights><rights>2018. American Geophysical Union. All rights reserved.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3642-2c59e80ad2287af481bf4f3782b7fe22c9058b3f9e5cf809fa9653d315cc3ae93</citedby><cites>FETCH-LOGICAL-a3642-2c59e80ad2287af481bf4f3782b7fe22c9058b3f9e5cf809fa9653d315cc3ae93</cites><orcidid>0000-0002-7260-9793 ; 0000-0002-9772-7366 ; 0000-0002-1979-431X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2018WR023366$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2018WR023366$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1416,11513,27923,27924,45573,45574,46467,46891</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01920772$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Boukhelifa, M.</creatorcontrib><creatorcontrib>Meddi, M.</creatorcontrib><creatorcontrib>Gaume, E.</creatorcontrib><title>Integrated Bayesian Estimation of Intensity‐Duration‐Frequency Curves: Consolidation and Extensive Testing of a Method</title><title>Water resources research</title><description>Intensity‐duration‐frequency (IDF) curves are one of the most common rainfall statistical models used in hydrologic design and analysis projects. The uncertainties related to the elaboration of these IDF curves have nevertheless seldom been evaluated in the past. The article will recall the existing link between the IDF formulation and some properties of the rainfall series such as simple scaling and multifractal structure. Assuming that these properties are valid, the IDF curves formulation is then the product of a dimensionless (i.e., reduced) distribution function for the annual maximum rainfall intensities/depths and a duration‐dependent scaling factor. Its parameters can be evaluated in an integrated way (i.e., based on a unique pooled sample of peak intensities over a range of durations: from 15 min to 24 hr). The use of likelihood‐based Bayesian Markov chain Monte Carlo statistical inference methods for this evaluation provides consistent uncertainties for all the parameters of the IDF relation and for the corresponding rainfall quantiles. This methodology has been tested, via a local analysis, on a large data set of 48 rain gauge records, spread over the north central part of Algeria (25,000 km2), under various climatic regimes. The integrated approach is undoubtedly consistent with estimates from annual maximum rainfall fitted to single durations. Furthermore, credibility intervals are significantly reduced. Also, this integrated approach appears to be robust: Unlike the traditional method based single durations, it generally provides rational quantile estimates, even when short observed series are available. This is a significant advantage for engineering applications. Key Points The integrated Bayesian approach allows to reduce the uncertainties in rainfall quantiles estimates Robustness in the estimation of the IDF curves for short observed series More reliable and consistent estimation of the scaling factor than through traditional moment scaling analyses</description><subject>Algeria</subject><subject>Annual rainfall</subject><subject>Bayesian analysis</subject><subject>Computer simulation</subject><subject>Distribution functions</subject><subject>Duration</subject><subject>Engineering Sciences</subject><subject>Evaluation</subject><subject>Hydrologic models</subject><subject>Hydrology</subject><subject>IDF curves</subject><subject>Integrated approach</subject><subject>Markov chains</subject><subject>Mathematical models</subject><subject>Maximum rainfall</subject><subject>MCMC</subject><subject>Monte Carlo simulation</subject><subject>Parameter uncertainty</subject><subject>Parameters</subject><subject>Probability theory</subject><subject>Properties</subject><subject>Quantiles</subject><subject>Rain</subject><subject>Rain gauges</subject><subject>Rainfall</subject><subject>Rainfall intensity</subject><subject>Scaling</subject><subject>Scaling factors</subject><subject>short series</subject><subject>simple scaling</subject><subject>Statistical analysis</subject><subject>Statistical inference</subject><subject>Statistical methods</subject><subject>Statistical models</subject><subject>Test procedures</subject><subject>uncertainties</subject><subject>Uncertainty analysis</subject><issn>0043-1397</issn><issn>1944-7973</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kc9KxDAQxoMouK7efICAJ8Fq_rRN403rriusCMvKHkO2TbRSE03a1XryEXxGn8SsFfHkaYaP33wzwwfAPkbHGBF-QhDOFjNEKE3TDTDAPI4jxhndBAOEYhphytk22PH-ASEcJykbgLcr06g7JxtVwnPZKV9JA0e-qR5lU1kDrYZrwviq6T7fPy5a962HduzUc6tM0cG8dSvlT2Fujbd1VfaT0pRw9Po9ulJwroKnuVv7SXitmntb7oItLWuv9n7qENyOR_N8Ek1vLq_ys2kkaRqTiBQJVxmSJSEZkzrO8FLHmrKMLJlWhBQcJdmSaq6SQmeIa8nThJYUJ0VBpeJ0CA5733tZiycXPnOdsLISk7OpWGsIc4IYIysc2IOefXI2fOcb8WBbZ8J5gmCakrCdx4E66qnCWe-d0r-2GIl1EuJvEgGnPf5S1ar7lxWLWT4jNMkI_QLoiozh</recordid><startdate>201810</startdate><enddate>201810</enddate><creator>Boukhelifa, M.</creator><creator>Meddi, M.</creator><creator>Gaume, E.</creator><general>John Wiley &amp; Sons, Inc</general><general>American Geophysical Union</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7QL</scope><scope>7T7</scope><scope>7TG</scope><scope>7U9</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H94</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>M7N</scope><scope>P64</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-7260-9793</orcidid><orcidid>https://orcid.org/0000-0002-9772-7366</orcidid><orcidid>https://orcid.org/0000-0002-1979-431X</orcidid></search><sort><creationdate>201810</creationdate><title>Integrated Bayesian Estimation of Intensity‐Duration‐Frequency Curves: Consolidation and Extensive Testing of a Method</title><author>Boukhelifa, M. ; Meddi, M. ; Gaume, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3642-2c59e80ad2287af481bf4f3782b7fe22c9058b3f9e5cf809fa9653d315cc3ae93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algeria</topic><topic>Annual rainfall</topic><topic>Bayesian analysis</topic><topic>Computer simulation</topic><topic>Distribution functions</topic><topic>Duration</topic><topic>Engineering Sciences</topic><topic>Evaluation</topic><topic>Hydrologic models</topic><topic>Hydrology</topic><topic>IDF curves</topic><topic>Integrated approach</topic><topic>Markov chains</topic><topic>Mathematical models</topic><topic>Maximum rainfall</topic><topic>MCMC</topic><topic>Monte Carlo simulation</topic><topic>Parameter uncertainty</topic><topic>Parameters</topic><topic>Probability theory</topic><topic>Properties</topic><topic>Quantiles</topic><topic>Rain</topic><topic>Rain gauges</topic><topic>Rainfall</topic><topic>Rainfall intensity</topic><topic>Scaling</topic><topic>Scaling factors</topic><topic>short series</topic><topic>simple scaling</topic><topic>Statistical analysis</topic><topic>Statistical inference</topic><topic>Statistical methods</topic><topic>Statistical models</topic><topic>Test procedures</topic><topic>uncertainties</topic><topic>Uncertainty analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boukhelifa, M.</creatorcontrib><creatorcontrib>Meddi, M.</creatorcontrib><creatorcontrib>Gaume, E.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Water resources research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boukhelifa, M.</au><au>Meddi, M.</au><au>Gaume, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrated Bayesian Estimation of Intensity‐Duration‐Frequency Curves: Consolidation and Extensive Testing of a Method</atitle><jtitle>Water resources research</jtitle><date>2018-10</date><risdate>2018</risdate><volume>54</volume><issue>10</issue><spage>7459</spage><epage>7477</epage><pages>7459-7477</pages><issn>0043-1397</issn><eissn>1944-7973</eissn><abstract>Intensity‐duration‐frequency (IDF) curves are one of the most common rainfall statistical models used in hydrologic design and analysis projects. The uncertainties related to the elaboration of these IDF curves have nevertheless seldom been evaluated in the past. The article will recall the existing link between the IDF formulation and some properties of the rainfall series such as simple scaling and multifractal structure. Assuming that these properties are valid, the IDF curves formulation is then the product of a dimensionless (i.e., reduced) distribution function for the annual maximum rainfall intensities/depths and a duration‐dependent scaling factor. Its parameters can be evaluated in an integrated way (i.e., based on a unique pooled sample of peak intensities over a range of durations: from 15 min to 24 hr). The use of likelihood‐based Bayesian Markov chain Monte Carlo statistical inference methods for this evaluation provides consistent uncertainties for all the parameters of the IDF relation and for the corresponding rainfall quantiles. This methodology has been tested, via a local analysis, on a large data set of 48 rain gauge records, spread over the north central part of Algeria (25,000 km2), under various climatic regimes. The integrated approach is undoubtedly consistent with estimates from annual maximum rainfall fitted to single durations. Furthermore, credibility intervals are significantly reduced. Also, this integrated approach appears to be robust: Unlike the traditional method based single durations, it generally provides rational quantile estimates, even when short observed series are available. This is a significant advantage for engineering applications. Key Points The integrated Bayesian approach allows to reduce the uncertainties in rainfall quantiles estimates Robustness in the estimation of the IDF curves for short observed series More reliable and consistent estimation of the scaling factor than through traditional moment scaling analyses</abstract><cop>Washington</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1029/2018WR023366</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-7260-9793</orcidid><orcidid>https://orcid.org/0000-0002-9772-7366</orcidid><orcidid>https://orcid.org/0000-0002-1979-431X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0043-1397
ispartof Water resources research, 2018-10, Vol.54 (10), p.7459-7477
issn 0043-1397
1944-7973
language eng
recordid cdi_hal_primary_oai_HAL_hal_01920772v1
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley-Blackwell AGU Digital Library; Wiley Online Library All Journals
subjects Algeria
Annual rainfall
Bayesian analysis
Computer simulation
Distribution functions
Duration
Engineering Sciences
Evaluation
Hydrologic models
Hydrology
IDF curves
Integrated approach
Markov chains
Mathematical models
Maximum rainfall
MCMC
Monte Carlo simulation
Parameter uncertainty
Parameters
Probability theory
Properties
Quantiles
Rain
Rain gauges
Rainfall
Rainfall intensity
Scaling
Scaling factors
short series
simple scaling
Statistical analysis
Statistical inference
Statistical methods
Statistical models
Test procedures
uncertainties
Uncertainty analysis
title Integrated Bayesian Estimation of Intensity‐Duration‐Frequency Curves: Consolidation and Extensive Testing of a Method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T22%3A56%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrated%20Bayesian%20Estimation%20of%20Intensity%E2%80%90Duration%E2%80%90Frequency%20Curves:%20Consolidation%20and%20Extensive%20Testing%20of%20a%20Method&rft.jtitle=Water%20resources%20research&rft.au=Boukhelifa,%20M.&rft.date=2018-10&rft.volume=54&rft.issue=10&rft.spage=7459&rft.epage=7477&rft.pages=7459-7477&rft.issn=0043-1397&rft.eissn=1944-7973&rft_id=info:doi/10.1029/2018WR023366&rft_dat=%3Cproquest_hal_p%3E2136248194%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2136248194&rft_id=info:pmid/&rfr_iscdi=true