Iterative solver approach for turbine interactions: application to wind or marine current turbine farms
•Numerical computation of wind or marine current turbines in a farm is investigated.•A Vortex method together with a panel method is considered.•Iterative approaches are compared for the solving of the so-called influence system.•A specific preconditioner, well suited for the desired application, is...
Gespeichert in:
Veröffentlicht in: | Applied Mathematical Modelling 2017-01, Vol.41, p.331-349 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 349 |
---|---|
container_issue | |
container_start_page | 331 |
container_title | Applied Mathematical Modelling |
container_volume | 41 |
creator | Mycek, Paul Pinon, Grégory Lothodé, Corentin Dezotti, Alexandre Carlier, Clément |
description | •Numerical computation of wind or marine current turbines in a farm is investigated.•A Vortex method together with a panel method is considered.•Iterative approaches are compared for the solving of the so-called influence system.•A specific preconditioner, well suited for the desired application, is proposed.•CPU times of computations involving up to 10 turbines are compared.
This paper presents a numerical investigation for the computation of wind or marine current turbines in a farm. A 3D unsteady Lagrangian vortex method is used together with a panel method in order to take into account for the turbines. In order to enforce the boundary condition onto the panel elements, a linear matrix system is defined. Solving general linear matrix systems is a topic with important scientific literature. But the main concern here is the application to a dedicated matrix which is non-sparse, non-symmetric, neither diagonally dominant nor positive-definite. Several iterative approaches were tested and compared. But after some numerical tests, a Bi-CGSTAB method was finally chosen. The main advantage of the presented method is the use of a specific preconditioner well suited for the desired application. The chosen implementation proved to be very efficient with only 3 iterations of our preconditioned Bi-CGSTAB algorithm whatever the turbine geometrical configuration. Although developed for wind or marine turbines, the proposed algorithm is absolutely not restricted to these cases, and can be applied to many others. At the end of the paper, some applications (specifically, wake computations) in a farm are presented, along with a quantitative assessment of the computational time savings brought by the iterative approach. |
doi_str_mv | 10.1016/j.apm.2016.08.027 |
format | Article |
fullrecord | <record><control><sourceid>proquest_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01919332v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0307904X16304516</els_id><sourcerecordid>1932193467</sourcerecordid><originalsourceid>FETCH-LOGICAL-c402t-8726370458b6ba1b2b324763d708cdded4539180fd3861ff658c4c2b4a7fc72c3</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhosouK7-AG8FTx5aJ0nbtHpaFnUXFrwoeAtpmrop3aYmacV_b0pl8eRhmA-ed5h5g-AaQYwAZXdNzPtDjH0ZQx4DpifBAgjQqIDk_fRPfR5cWNsAQOq7RfCxddJwp0YZWt2O0oS8743mYh_W2oRuMKXqZKi6CRNO6c7eT0irBJ-60OnwS3VV6OEDNxMrBmNk547ampuDvQzOat5aefWbl8Hb0-PrehPtXp6369UuEglgF-UUZ4RCkuZlVnJU4pLghGakopCLqpJVkpIC5VBXJM9QXWdpLhKBy4TTWlAsyDK4nffuect6o_xN30xzxTarHZtmgApUEIJH5NmbmfUPfw7SOtbowXT-POYR7CPJqKfQTAmjrTWyPq5FwCbvWcO892zynkHOvPde8zBrpH91VNIwK5TshKyUkcKxSqt_1D8YRYzf</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1932193467</pqid></control><display><type>article</type><title>Iterative solver approach for turbine interactions: application to wind or marine current turbine farms</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>EBSCOhost Business Source Complete</source><source>ScienceDirect Journals (5 years ago - present)</source><source>Education Source</source><creator>Mycek, Paul ; Pinon, Grégory ; Lothodé, Corentin ; Dezotti, Alexandre ; Carlier, Clément</creator><creatorcontrib>Mycek, Paul ; Pinon, Grégory ; Lothodé, Corentin ; Dezotti, Alexandre ; Carlier, Clément</creatorcontrib><description>•Numerical computation of wind or marine current turbines in a farm is investigated.•A Vortex method together with a panel method is considered.•Iterative approaches are compared for the solving of the so-called influence system.•A specific preconditioner, well suited for the desired application, is proposed.•CPU times of computations involving up to 10 turbines are compared.
This paper presents a numerical investigation for the computation of wind or marine current turbines in a farm. A 3D unsteady Lagrangian vortex method is used together with a panel method in order to take into account for the turbines. In order to enforce the boundary condition onto the panel elements, a linear matrix system is defined. Solving general linear matrix systems is a topic with important scientific literature. But the main concern here is the application to a dedicated matrix which is non-sparse, non-symmetric, neither diagonally dominant nor positive-definite. Several iterative approaches were tested and compared. But after some numerical tests, a Bi-CGSTAB method was finally chosen. The main advantage of the presented method is the use of a specific preconditioner well suited for the desired application. The chosen implementation proved to be very efficient with only 3 iterations of our preconditioned Bi-CGSTAB algorithm whatever the turbine geometrical configuration. Although developed for wind or marine turbines, the proposed algorithm is absolutely not restricted to these cases, and can be applied to many others. At the end of the paper, some applications (specifically, wake computations) in a farm are presented, along with a quantitative assessment of the computational time savings brought by the iterative approach.</description><identifier>ISSN: 0307-904X</identifier><identifier>ISSN: 1088-8691</identifier><identifier>EISSN: 0307-904X</identifier><identifier>EISSN: 1872-8480</identifier><identifier>DOI: 10.1016/j.apm.2016.08.027</identifier><language>eng</language><publisher>New York: Elsevier Inc</publisher><subject>Algorithms ; Bi-GCSTAB ; Computation ; Iterative methods ; Iterative solver ; Lagrange vortex method ; Lagrangian vortex method ; Marine current turbine ; Mathematical analysis ; Panel method (fluid dynamics) ; Physics ; Preconditioner ; Test procedures ; Turbines ; Wind farms ; Wind turbine ; Wind turbines</subject><ispartof>Applied Mathematical Modelling, 2017-01, Vol.41, p.331-349</ispartof><rights>2016</rights><rights>Copyright Elsevier BV Jan 2017</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c402t-8726370458b6ba1b2b324763d708cdded4539180fd3861ff658c4c2b4a7fc72c3</citedby><cites>FETCH-LOGICAL-c402t-8726370458b6ba1b2b324763d708cdded4539180fd3861ff658c4c2b4a7fc72c3</cites><orcidid>0000-0002-6919-112X ; 0000-0002-9708-1219 ; 0000-0002-8209-317X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.apm.2016.08.027$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,778,782,883,3539,27911,27912,45982</link.rule.ids><backlink>$$Uhttps://normandie-univ.hal.science/hal-01919332$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Mycek, Paul</creatorcontrib><creatorcontrib>Pinon, Grégory</creatorcontrib><creatorcontrib>Lothodé, Corentin</creatorcontrib><creatorcontrib>Dezotti, Alexandre</creatorcontrib><creatorcontrib>Carlier, Clément</creatorcontrib><title>Iterative solver approach for turbine interactions: application to wind or marine current turbine farms</title><title>Applied Mathematical Modelling</title><description>•Numerical computation of wind or marine current turbines in a farm is investigated.•A Vortex method together with a panel method is considered.•Iterative approaches are compared for the solving of the so-called influence system.•A specific preconditioner, well suited for the desired application, is proposed.•CPU times of computations involving up to 10 turbines are compared.
This paper presents a numerical investigation for the computation of wind or marine current turbines in a farm. A 3D unsteady Lagrangian vortex method is used together with a panel method in order to take into account for the turbines. In order to enforce the boundary condition onto the panel elements, a linear matrix system is defined. Solving general linear matrix systems is a topic with important scientific literature. But the main concern here is the application to a dedicated matrix which is non-sparse, non-symmetric, neither diagonally dominant nor positive-definite. Several iterative approaches were tested and compared. But after some numerical tests, a Bi-CGSTAB method was finally chosen. The main advantage of the presented method is the use of a specific preconditioner well suited for the desired application. The chosen implementation proved to be very efficient with only 3 iterations of our preconditioned Bi-CGSTAB algorithm whatever the turbine geometrical configuration. Although developed for wind or marine turbines, the proposed algorithm is absolutely not restricted to these cases, and can be applied to many others. At the end of the paper, some applications (specifically, wake computations) in a farm are presented, along with a quantitative assessment of the computational time savings brought by the iterative approach.</description><subject>Algorithms</subject><subject>Bi-GCSTAB</subject><subject>Computation</subject><subject>Iterative methods</subject><subject>Iterative solver</subject><subject>Lagrange vortex method</subject><subject>Lagrangian vortex method</subject><subject>Marine current turbine</subject><subject>Mathematical analysis</subject><subject>Panel method (fluid dynamics)</subject><subject>Physics</subject><subject>Preconditioner</subject><subject>Test procedures</subject><subject>Turbines</subject><subject>Wind farms</subject><subject>Wind turbine</subject><subject>Wind turbines</subject><issn>0307-904X</issn><issn>1088-8691</issn><issn>0307-904X</issn><issn>1872-8480</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhosouK7-AG8FTx5aJ0nbtHpaFnUXFrwoeAtpmrop3aYmacV_b0pl8eRhmA-ed5h5g-AaQYwAZXdNzPtDjH0ZQx4DpifBAgjQqIDk_fRPfR5cWNsAQOq7RfCxddJwp0YZWt2O0oS8743mYh_W2oRuMKXqZKi6CRNO6c7eT0irBJ-60OnwS3VV6OEDNxMrBmNk547ampuDvQzOat5aefWbl8Hb0-PrehPtXp6369UuEglgF-UUZ4RCkuZlVnJU4pLghGakopCLqpJVkpIC5VBXJM9QXWdpLhKBy4TTWlAsyDK4nffuect6o_xN30xzxTarHZtmgApUEIJH5NmbmfUPfw7SOtbowXT-POYR7CPJqKfQTAmjrTWyPq5FwCbvWcO892zynkHOvPde8zBrpH91VNIwK5TshKyUkcKxSqt_1D8YRYzf</recordid><startdate>201701</startdate><enddate>201701</enddate><creator>Mycek, Paul</creator><creator>Pinon, Grégory</creator><creator>Lothodé, Corentin</creator><creator>Dezotti, Alexandre</creator><creator>Carlier, Clément</creator><general>Elsevier Inc</general><general>Elsevier BV</general><general>Elsevier</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-6919-112X</orcidid><orcidid>https://orcid.org/0000-0002-9708-1219</orcidid><orcidid>https://orcid.org/0000-0002-8209-317X</orcidid></search><sort><creationdate>201701</creationdate><title>Iterative solver approach for turbine interactions: application to wind or marine current turbine farms</title><author>Mycek, Paul ; Pinon, Grégory ; Lothodé, Corentin ; Dezotti, Alexandre ; Carlier, Clément</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c402t-8726370458b6ba1b2b324763d708cdded4539180fd3861ff658c4c2b4a7fc72c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Bi-GCSTAB</topic><topic>Computation</topic><topic>Iterative methods</topic><topic>Iterative solver</topic><topic>Lagrange vortex method</topic><topic>Lagrangian vortex method</topic><topic>Marine current turbine</topic><topic>Mathematical analysis</topic><topic>Panel method (fluid dynamics)</topic><topic>Physics</topic><topic>Preconditioner</topic><topic>Test procedures</topic><topic>Turbines</topic><topic>Wind farms</topic><topic>Wind turbine</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mycek, Paul</creatorcontrib><creatorcontrib>Pinon, Grégory</creatorcontrib><creatorcontrib>Lothodé, Corentin</creatorcontrib><creatorcontrib>Dezotti, Alexandre</creatorcontrib><creatorcontrib>Carlier, Clément</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Applied Mathematical Modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mycek, Paul</au><au>Pinon, Grégory</au><au>Lothodé, Corentin</au><au>Dezotti, Alexandre</au><au>Carlier, Clément</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Iterative solver approach for turbine interactions: application to wind or marine current turbine farms</atitle><jtitle>Applied Mathematical Modelling</jtitle><date>2017-01</date><risdate>2017</risdate><volume>41</volume><spage>331</spage><epage>349</epage><pages>331-349</pages><issn>0307-904X</issn><issn>1088-8691</issn><eissn>0307-904X</eissn><eissn>1872-8480</eissn><abstract>•Numerical computation of wind or marine current turbines in a farm is investigated.•A Vortex method together with a panel method is considered.•Iterative approaches are compared for the solving of the so-called influence system.•A specific preconditioner, well suited for the desired application, is proposed.•CPU times of computations involving up to 10 turbines are compared.
This paper presents a numerical investigation for the computation of wind or marine current turbines in a farm. A 3D unsteady Lagrangian vortex method is used together with a panel method in order to take into account for the turbines. In order to enforce the boundary condition onto the panel elements, a linear matrix system is defined. Solving general linear matrix systems is a topic with important scientific literature. But the main concern here is the application to a dedicated matrix which is non-sparse, non-symmetric, neither diagonally dominant nor positive-definite. Several iterative approaches were tested and compared. But after some numerical tests, a Bi-CGSTAB method was finally chosen. The main advantage of the presented method is the use of a specific preconditioner well suited for the desired application. The chosen implementation proved to be very efficient with only 3 iterations of our preconditioned Bi-CGSTAB algorithm whatever the turbine geometrical configuration. Although developed for wind or marine turbines, the proposed algorithm is absolutely not restricted to these cases, and can be applied to many others. At the end of the paper, some applications (specifically, wake computations) in a farm are presented, along with a quantitative assessment of the computational time savings brought by the iterative approach.</abstract><cop>New York</cop><pub>Elsevier Inc</pub><doi>10.1016/j.apm.2016.08.027</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-6919-112X</orcidid><orcidid>https://orcid.org/0000-0002-9708-1219</orcidid><orcidid>https://orcid.org/0000-0002-8209-317X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0307-904X |
ispartof | Applied Mathematical Modelling, 2017-01, Vol.41, p.331-349 |
issn | 0307-904X 1088-8691 0307-904X 1872-8480 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01919332v1 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; EBSCOhost Business Source Complete; ScienceDirect Journals (5 years ago - present); Education Source |
subjects | Algorithms Bi-GCSTAB Computation Iterative methods Iterative solver Lagrange vortex method Lagrangian vortex method Marine current turbine Mathematical analysis Panel method (fluid dynamics) Physics Preconditioner Test procedures Turbines Wind farms Wind turbine Wind turbines |
title | Iterative solver approach for turbine interactions: application to wind or marine current turbine farms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T10%3A34%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Iterative%20solver%20approach%20for%20turbine%20interactions:%20application%20to%20wind%20or%20marine%20current%20turbine%20farms&rft.jtitle=Applied%20Mathematical%20Modelling&rft.au=Mycek,%20Paul&rft.date=2017-01&rft.volume=41&rft.spage=331&rft.epage=349&rft.pages=331-349&rft.issn=0307-904X&rft.eissn=0307-904X&rft_id=info:doi/10.1016/j.apm.2016.08.027&rft_dat=%3Cproquest_hal_p%3E1932193467%3C/proquest_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1932193467&rft_id=info:pmid/&rft_els_id=S0307904X16304516&rfr_iscdi=true |