Riesz Bases of Reproducing Kernels in Small Fock Spaces

We give a complete characterization of Riesz bases of normalized reproducing kernels in the small Fock spaces F φ 2 , the spaces of entire functions f such that f e - φ ∈ L 2 ( C ) , where φ ( z ) = ( log + | z | ) β + 1 , 0 < β ≤ 1 . The first results in this direction are due to Borichev–Lyubar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of fourier analysis and applications 2020-02, Vol.26 (1), Article 17
Hauptverfasser: Kellay, K., Omari, Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title The Journal of fourier analysis and applications
container_volume 26
creator Kellay, K.
Omari, Y.
description We give a complete characterization of Riesz bases of normalized reproducing kernels in the small Fock spaces F φ 2 , the spaces of entire functions f such that f e - φ ∈ L 2 ( C ) , where φ ( z ) = ( log + | z | ) β + 1 , 0 < β ≤ 1 . The first results in this direction are due to Borichev–Lyubarskii who showed that φ with β = 1 is the largest weight for which the corresponding Fock space admits Riesz bases of reproducing kernels. Later, such bases were characterized by Baranov et al. in the case when β = 1 . The present paper answers a question in Baranov et al. by extending their results for all parameters β ∈ ( 0 , 1 ) . Our results are analogous to those obtained for the case β = 1 and those proved for Riesz bases of complex exponentials for the Paley–Wiener spaces. We also obtain a description of complete interpolating sequences in small Fock spaces with corresponding uniform norm.
doi_str_mv 10.1007/s00041-019-09719-4
format Article
fullrecord <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01918516v2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A718443580</galeid><sourcerecordid>A718443580</sourcerecordid><originalsourceid>FETCH-LOGICAL-c436t-e48a2de3eeadac6f6e6dbc4cbccbeda9ed447b4006be59d592ec63339034f11b3</originalsourceid><addsrcrecordid>eNp9kEFLAzEUhIMoWKt_wFPAk4etySab3RyrWCsWhFbPIZu8ranbTU1aQX-9qSt6k0DyeMwXZgahc0pGlJDyKhJCOM0IlRmRZbr5ARrQgtGsqAp6mGYiZJqFPEYnMa4IySkr2QCVcwfxE1_rCBH7Bs9hE7zdGdct8QOEDtqIXYcXa922eOLNK15stIF4io4a3UY4-3mH6Hly-3QzzWaPd_c341lmOBPbDHilcwsMQFttRCNA2NpwUxtTg9USLOdlzQkRNRTSFjIHIxhjkjDeUFqzIbrs_33RrdoEt9bhQ3nt1HQ8U_tdikxTRPGeJ-1Fr00R3nYQt2rld6FL9lTOOMurqmAiqUa9aqlbUK5r_DZok46FtTO-g8al_bikFeesqEgC8h4wwccYoPn1QYnat6_69vdW1Hf7iieI9VBM4m4J4c_LP9QX3buFyw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2343288536</pqid></control><display><type>article</type><title>Riesz Bases of Reproducing Kernels in Small Fock Spaces</title><source>Springer Nature - Complete Springer Journals</source><creator>Kellay, K. ; Omari, Y.</creator><creatorcontrib>Kellay, K. ; Omari, Y.</creatorcontrib><description>We give a complete characterization of Riesz bases of normalized reproducing kernels in the small Fock spaces F φ 2 , the spaces of entire functions f such that f e - φ ∈ L 2 ( C ) , where φ ( z ) = ( log + | z | ) β + 1 , 0 &lt; β ≤ 1 . The first results in this direction are due to Borichev–Lyubarskii who showed that φ with β = 1 is the largest weight for which the corresponding Fock space admits Riesz bases of reproducing kernels. Later, such bases were characterized by Baranov et al. in the case when β = 1 . The present paper answers a question in Baranov et al. by extending their results for all parameters β ∈ ( 0 , 1 ) . Our results are analogous to those obtained for the case β = 1 and those proved for Riesz bases of complex exponentials for the Paley–Wiener spaces. We also obtain a description of complete interpolating sequences in small Fock spaces with corresponding uniform norm.</description><identifier>ISSN: 1069-5869</identifier><identifier>EISSN: 1531-5851</identifier><identifier>DOI: 10.1007/s00041-019-09719-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Abstract Harmonic Analysis ; Approximations and Expansions ; Classical Analysis and ODEs ; Complex Variables ; Entire functions ; Fourier Analysis ; Functional Analysis ; Kernels ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Partial Differential Equations ; Signal,Image and Speech Processing</subject><ispartof>The Journal of fourier analysis and applications, 2020-02, Vol.26 (1), Article 17</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>2020© Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c436t-e48a2de3eeadac6f6e6dbc4cbccbeda9ed447b4006be59d592ec63339034f11b3</citedby><cites>FETCH-LOGICAL-c436t-e48a2de3eeadac6f6e6dbc4cbccbeda9ed447b4006be59d592ec63339034f11b3</cites><orcidid>0000-0003-2529-5987</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00041-019-09719-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00041-019-09719-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01918516$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Kellay, K.</creatorcontrib><creatorcontrib>Omari, Y.</creatorcontrib><title>Riesz Bases of Reproducing Kernels in Small Fock Spaces</title><title>The Journal of fourier analysis and applications</title><addtitle>J Fourier Anal Appl</addtitle><description>We give a complete characterization of Riesz bases of normalized reproducing kernels in the small Fock spaces F φ 2 , the spaces of entire functions f such that f e - φ ∈ L 2 ( C ) , where φ ( z ) = ( log + | z | ) β + 1 , 0 &lt; β ≤ 1 . The first results in this direction are due to Borichev–Lyubarskii who showed that φ with β = 1 is the largest weight for which the corresponding Fock space admits Riesz bases of reproducing kernels. Later, such bases were characterized by Baranov et al. in the case when β = 1 . The present paper answers a question in Baranov et al. by extending their results for all parameters β ∈ ( 0 , 1 ) . Our results are analogous to those obtained for the case β = 1 and those proved for Riesz bases of complex exponentials for the Paley–Wiener spaces. We also obtain a description of complete interpolating sequences in small Fock spaces with corresponding uniform norm.</description><subject>Abstract Harmonic Analysis</subject><subject>Approximations and Expansions</subject><subject>Classical Analysis and ODEs</subject><subject>Complex Variables</subject><subject>Entire functions</subject><subject>Fourier Analysis</subject><subject>Functional Analysis</subject><subject>Kernels</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Partial Differential Equations</subject><subject>Signal,Image and Speech Processing</subject><issn>1069-5869</issn><issn>1531-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kEFLAzEUhIMoWKt_wFPAk4etySab3RyrWCsWhFbPIZu8ranbTU1aQX-9qSt6k0DyeMwXZgahc0pGlJDyKhJCOM0IlRmRZbr5ARrQgtGsqAp6mGYiZJqFPEYnMa4IySkr2QCVcwfxE1_rCBH7Bs9hE7zdGdct8QOEDtqIXYcXa922eOLNK15stIF4io4a3UY4-3mH6Hly-3QzzWaPd_c341lmOBPbDHilcwsMQFttRCNA2NpwUxtTg9USLOdlzQkRNRTSFjIHIxhjkjDeUFqzIbrs_33RrdoEt9bhQ3nt1HQ8U_tdikxTRPGeJ-1Fr00R3nYQt2rld6FL9lTOOMurqmAiqUa9aqlbUK5r_DZok46FtTO-g8al_bikFeesqEgC8h4wwccYoPn1QYnat6_69vdW1Hf7iieI9VBM4m4J4c_LP9QX3buFyw</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Kellay, K.</creator><creator>Omari, Y.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><general>Springer Verlag</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-2529-5987</orcidid></search><sort><creationdate>20200201</creationdate><title>Riesz Bases of Reproducing Kernels in Small Fock Spaces</title><author>Kellay, K. ; Omari, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c436t-e48a2de3eeadac6f6e6dbc4cbccbeda9ed447b4006be59d592ec63339034f11b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Approximations and Expansions</topic><topic>Classical Analysis and ODEs</topic><topic>Complex Variables</topic><topic>Entire functions</topic><topic>Fourier Analysis</topic><topic>Functional Analysis</topic><topic>Kernels</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Partial Differential Equations</topic><topic>Signal,Image and Speech Processing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kellay, K.</creatorcontrib><creatorcontrib>Omari, Y.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>The Journal of fourier analysis and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kellay, K.</au><au>Omari, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Riesz Bases of Reproducing Kernels in Small Fock Spaces</atitle><jtitle>The Journal of fourier analysis and applications</jtitle><stitle>J Fourier Anal Appl</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>26</volume><issue>1</issue><artnum>17</artnum><issn>1069-5869</issn><eissn>1531-5851</eissn><abstract>We give a complete characterization of Riesz bases of normalized reproducing kernels in the small Fock spaces F φ 2 , the spaces of entire functions f such that f e - φ ∈ L 2 ( C ) , where φ ( z ) = ( log + | z | ) β + 1 , 0 &lt; β ≤ 1 . The first results in this direction are due to Borichev–Lyubarskii who showed that φ with β = 1 is the largest weight for which the corresponding Fock space admits Riesz bases of reproducing kernels. Later, such bases were characterized by Baranov et al. in the case when β = 1 . The present paper answers a question in Baranov et al. by extending their results for all parameters β ∈ ( 0 , 1 ) . Our results are analogous to those obtained for the case β = 1 and those proved for Riesz bases of complex exponentials for the Paley–Wiener spaces. We also obtain a description of complete interpolating sequences in small Fock spaces with corresponding uniform norm.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00041-019-09719-4</doi><orcidid>https://orcid.org/0000-0003-2529-5987</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1069-5869
ispartof The Journal of fourier analysis and applications, 2020-02, Vol.26 (1), Article 17
issn 1069-5869
1531-5851
language eng
recordid cdi_hal_primary_oai_HAL_hal_01918516v2
source Springer Nature - Complete Springer Journals
subjects Abstract Harmonic Analysis
Approximations and Expansions
Classical Analysis and ODEs
Complex Variables
Entire functions
Fourier Analysis
Functional Analysis
Kernels
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Partial Differential Equations
Signal,Image and Speech Processing
title Riesz Bases of Reproducing Kernels in Small Fock Spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T16%3A58%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Riesz%20Bases%20of%20Reproducing%20Kernels%20in%20Small%20Fock%20Spaces&rft.jtitle=The%20Journal%20of%20fourier%20analysis%20and%20applications&rft.au=Kellay,%20K.&rft.date=2020-02-01&rft.volume=26&rft.issue=1&rft.artnum=17&rft.issn=1069-5869&rft.eissn=1531-5851&rft_id=info:doi/10.1007/s00041-019-09719-4&rft_dat=%3Cgale_hal_p%3EA718443580%3C/gale_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2343288536&rft_id=info:pmid/&rft_galeid=A718443580&rfr_iscdi=true