Self-interference 3D super-resolution microscopy for deep tissue investigations

Fluorescence localization microscopy has achieved near-molecular resolution capable of revealing ultra-structures, with a broad range of applications, especially in cellular biology. However, it remains challenging to attain such resolution in three dimensions and inside biological tissues beyond th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature methods 2018-06, Vol.15 (6), p.449-454
Hauptverfasser: Bon, Pierre, Linarès-Loyez, Jeanne, Feyeux, Maxime, Alessandri, Kevin, Lounis, Brahim, Nassoy, Pierre, Cognet, Laurent
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 454
container_issue 6
container_start_page 449
container_title Nature methods
container_volume 15
creator Bon, Pierre
Linarès-Loyez, Jeanne
Feyeux, Maxime
Alessandri, Kevin
Lounis, Brahim
Nassoy, Pierre
Cognet, Laurent
description Fluorescence localization microscopy has achieved near-molecular resolution capable of revealing ultra-structures, with a broad range of applications, especially in cellular biology. However, it remains challenging to attain such resolution in three dimensions and inside biological tissues beyond the first cell layer. Here we introduce SELFI, a framework for 3D single-molecule localization within multicellular specimens and tissues. The approach relies on self-interference generated within the microscope's point spread function (PSF) to simultaneously encode equiphase and intensity fluorescence signals, which together provide the 3D position of an emitter. We combined SELFI with conventional localization microscopy to visualize F-actin 3D filament networks and reveal the spatial distribution of the transcription factor OCT4 in human induced pluripotent stem cells at depths up to 50 µm inside uncleared tissue spheroids. SELFI paves the way to nanoscale investigations of native cellular processes in intact tissues. Several methods make it possible to obtain depth information in 3D super-resolution microscopy. Here the authors exploit a self-interference phenomenon to allow deep imaging within tissue samples, as well as isotropic imaging.
doi_str_mv 10.1038/s41592-018-0005-3
format Article
fullrecord <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01914540v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A572564449</galeid><sourcerecordid>A572564449</sourcerecordid><originalsourceid>FETCH-LOGICAL-c473t-d72a8af4427201e297ace3547353940fdcc913a83e5f65ab5d885296f19776413</originalsourceid><addsrcrecordid>eNp1kUtv1TAQhSMEoqXwA9igSGzowu34ldjLq0JppSt1UVhbrjO-uMqNg51U6r_HUdryUJEXtsbfGc2ZU1XvKZxQ4Oo0Cyo1I0AVAQBJ-IvqkEqhSEtBvnx8g6YH1ZucbwE4F0y-rg6YbikHxQ6rq2vsPQnDhMljwsFhzT_XeR4xkYQ59vMU4lDvg0sxuzje1z6mukMc6ynkPGMdhjvMU9jZBcxvq1fe9hnfPdxH1ffzL9_OLsj26uvl2WZLnGj5RLqWWWW9EKxlQLHMYx1yWf4k1wJ855ym3CqO0jfS3shOKcl046lu20ZQflQdr31_2N6MKextujfRBnOx2ZqlBlRTIQXcLeynlR1T_DmXYc0-ZId9bweMczas7IWrppWsoB__QW_jnIbipFASRAMU_qB2tkcTBh-nZN3S1Gxky2QjhNCFOnmGKqfDss44oA-l_peAroJl1zmhfzJGwSyBmzXw4k2ZJXDDi-bDw8DzzR67J8VjwgVgK5DL17DD9NvR_7v-AvBzsfM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2050460102</pqid></control><display><type>article</type><title>Self-interference 3D super-resolution microscopy for deep tissue investigations</title><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Bon, Pierre ; Linarès-Loyez, Jeanne ; Feyeux, Maxime ; Alessandri, Kevin ; Lounis, Brahim ; Nassoy, Pierre ; Cognet, Laurent</creator><creatorcontrib>Bon, Pierre ; Linarès-Loyez, Jeanne ; Feyeux, Maxime ; Alessandri, Kevin ; Lounis, Brahim ; Nassoy, Pierre ; Cognet, Laurent</creatorcontrib><description>Fluorescence localization microscopy has achieved near-molecular resolution capable of revealing ultra-structures, with a broad range of applications, especially in cellular biology. However, it remains challenging to attain such resolution in three dimensions and inside biological tissues beyond the first cell layer. Here we introduce SELFI, a framework for 3D single-molecule localization within multicellular specimens and tissues. The approach relies on self-interference generated within the microscope's point spread function (PSF) to simultaneously encode equiphase and intensity fluorescence signals, which together provide the 3D position of an emitter. We combined SELFI with conventional localization microscopy to visualize F-actin 3D filament networks and reveal the spatial distribution of the transcription factor OCT4 in human induced pluripotent stem cells at depths up to 50 µm inside uncleared tissue spheroids. SELFI paves the way to nanoscale investigations of native cellular processes in intact tissues. Several methods make it possible to obtain depth information in 3D super-resolution microscopy. Here the authors exploit a self-interference phenomenon to allow deep imaging within tissue samples, as well as isotropic imaging.</description><identifier>ISSN: 1548-7091</identifier><identifier>EISSN: 1548-7105</identifier><identifier>DOI: 10.1038/s41592-018-0005-3</identifier><identifier>PMID: 29713082</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/1647/328/1650 ; 631/1647/328/2238 ; Actin ; Bioinformatics ; Biological Microscopy ; Biological Physics ; Biological specimens ; Biological Techniques ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Cellular structure ; Emitters ; Fluorescence ; Fluorescence microscopy ; Interference ; Life Sciences ; Localization ; Methods ; Microscopy ; Molecular chains ; Muscle proteins ; Observations ; Oct-4 protein ; Physics ; Pluripotency ; Point spread functions ; Position (location) ; Proteomics ; Resolution (Optics) ; Spatial distribution ; Spheroids ; Stem cells ; Three-dimensional imaging ; Tissues ; Tissues (Anatomy)</subject><ispartof>Nature methods, 2018-06, Vol.15 (6), p.449-454</ispartof><rights>The Author(s) 2018</rights><rights>COPYRIGHT 2018 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jun 2018</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c473t-d72a8af4427201e297ace3547353940fdcc913a83e5f65ab5d885296f19776413</citedby><cites>FETCH-LOGICAL-c473t-d72a8af4427201e297ace3547353940fdcc913a83e5f65ab5d885296f19776413</cites><orcidid>0000-0002-3573-5387 ; 0000-0002-7820-5327 ; 0000-0002-1986-3493 ; 0000-0003-2216-2839</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41592-018-0005-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41592-018-0005-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27922,27923,41486,42555,51317</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29713082$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-01914540$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Bon, Pierre</creatorcontrib><creatorcontrib>Linarès-Loyez, Jeanne</creatorcontrib><creatorcontrib>Feyeux, Maxime</creatorcontrib><creatorcontrib>Alessandri, Kevin</creatorcontrib><creatorcontrib>Lounis, Brahim</creatorcontrib><creatorcontrib>Nassoy, Pierre</creatorcontrib><creatorcontrib>Cognet, Laurent</creatorcontrib><title>Self-interference 3D super-resolution microscopy for deep tissue investigations</title><title>Nature methods</title><addtitle>Nat Methods</addtitle><addtitle>Nat Methods</addtitle><description>Fluorescence localization microscopy has achieved near-molecular resolution capable of revealing ultra-structures, with a broad range of applications, especially in cellular biology. However, it remains challenging to attain such resolution in three dimensions and inside biological tissues beyond the first cell layer. Here we introduce SELFI, a framework for 3D single-molecule localization within multicellular specimens and tissues. The approach relies on self-interference generated within the microscope's point spread function (PSF) to simultaneously encode equiphase and intensity fluorescence signals, which together provide the 3D position of an emitter. We combined SELFI with conventional localization microscopy to visualize F-actin 3D filament networks and reveal the spatial distribution of the transcription factor OCT4 in human induced pluripotent stem cells at depths up to 50 µm inside uncleared tissue spheroids. SELFI paves the way to nanoscale investigations of native cellular processes in intact tissues. Several methods make it possible to obtain depth information in 3D super-resolution microscopy. Here the authors exploit a self-interference phenomenon to allow deep imaging within tissue samples, as well as isotropic imaging.</description><subject>631/1647/328/1650</subject><subject>631/1647/328/2238</subject><subject>Actin</subject><subject>Bioinformatics</subject><subject>Biological Microscopy</subject><subject>Biological Physics</subject><subject>Biological specimens</subject><subject>Biological Techniques</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Cellular structure</subject><subject>Emitters</subject><subject>Fluorescence</subject><subject>Fluorescence microscopy</subject><subject>Interference</subject><subject>Life Sciences</subject><subject>Localization</subject><subject>Methods</subject><subject>Microscopy</subject><subject>Molecular chains</subject><subject>Muscle proteins</subject><subject>Observations</subject><subject>Oct-4 protein</subject><subject>Physics</subject><subject>Pluripotency</subject><subject>Point spread functions</subject><subject>Position (location)</subject><subject>Proteomics</subject><subject>Resolution (Optics)</subject><subject>Spatial distribution</subject><subject>Spheroids</subject><subject>Stem cells</subject><subject>Three-dimensional imaging</subject><subject>Tissues</subject><subject>Tissues (Anatomy)</subject><issn>1548-7091</issn><issn>1548-7105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kUtv1TAQhSMEoqXwA9igSGzowu34ldjLq0JppSt1UVhbrjO-uMqNg51U6r_HUdryUJEXtsbfGc2ZU1XvKZxQ4Oo0Cyo1I0AVAQBJ-IvqkEqhSEtBvnx8g6YH1ZucbwE4F0y-rg6YbikHxQ6rq2vsPQnDhMljwsFhzT_XeR4xkYQ59vMU4lDvg0sxuzje1z6mukMc6ynkPGMdhjvMU9jZBcxvq1fe9hnfPdxH1ffzL9_OLsj26uvl2WZLnGj5RLqWWWW9EKxlQLHMYx1yWf4k1wJ855ym3CqO0jfS3shOKcl046lu20ZQflQdr31_2N6MKextujfRBnOx2ZqlBlRTIQXcLeynlR1T_DmXYc0-ZId9bweMczas7IWrppWsoB__QW_jnIbipFASRAMU_qB2tkcTBh-nZN3S1Gxky2QjhNCFOnmGKqfDss44oA-l_peAroJl1zmhfzJGwSyBmzXw4k2ZJXDDi-bDw8DzzR67J8VjwgVgK5DL17DD9NvR_7v-AvBzsfM</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Bon, Pierre</creator><creator>Linarès-Loyez, Jeanne</creator><creator>Feyeux, Maxime</creator><creator>Alessandri, Kevin</creator><creator>Lounis, Brahim</creator><creator>Nassoy, Pierre</creator><creator>Cognet, Laurent</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QO</scope><scope>7SS</scope><scope>7TK</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-3573-5387</orcidid><orcidid>https://orcid.org/0000-0002-7820-5327</orcidid><orcidid>https://orcid.org/0000-0002-1986-3493</orcidid><orcidid>https://orcid.org/0000-0003-2216-2839</orcidid></search><sort><creationdate>20180601</creationdate><title>Self-interference 3D super-resolution microscopy for deep tissue investigations</title><author>Bon, Pierre ; Linarès-Loyez, Jeanne ; Feyeux, Maxime ; Alessandri, Kevin ; Lounis, Brahim ; Nassoy, Pierre ; Cognet, Laurent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c473t-d72a8af4427201e297ace3547353940fdcc913a83e5f65ab5d885296f19776413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>631/1647/328/1650</topic><topic>631/1647/328/2238</topic><topic>Actin</topic><topic>Bioinformatics</topic><topic>Biological Microscopy</topic><topic>Biological Physics</topic><topic>Biological specimens</topic><topic>Biological Techniques</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Cellular structure</topic><topic>Emitters</topic><topic>Fluorescence</topic><topic>Fluorescence microscopy</topic><topic>Interference</topic><topic>Life Sciences</topic><topic>Localization</topic><topic>Methods</topic><topic>Microscopy</topic><topic>Molecular chains</topic><topic>Muscle proteins</topic><topic>Observations</topic><topic>Oct-4 protein</topic><topic>Physics</topic><topic>Pluripotency</topic><topic>Point spread functions</topic><topic>Position (location)</topic><topic>Proteomics</topic><topic>Resolution (Optics)</topic><topic>Spatial distribution</topic><topic>Spheroids</topic><topic>Stem cells</topic><topic>Three-dimensional imaging</topic><topic>Tissues</topic><topic>Tissues (Anatomy)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bon, Pierre</creatorcontrib><creatorcontrib>Linarès-Loyez, Jeanne</creatorcontrib><creatorcontrib>Feyeux, Maxime</creatorcontrib><creatorcontrib>Alessandri, Kevin</creatorcontrib><creatorcontrib>Lounis, Brahim</creatorcontrib><creatorcontrib>Nassoy, Pierre</creatorcontrib><creatorcontrib>Cognet, Laurent</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>Nature methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bon, Pierre</au><au>Linarès-Loyez, Jeanne</au><au>Feyeux, Maxime</au><au>Alessandri, Kevin</au><au>Lounis, Brahim</au><au>Nassoy, Pierre</au><au>Cognet, Laurent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-interference 3D super-resolution microscopy for deep tissue investigations</atitle><jtitle>Nature methods</jtitle><stitle>Nat Methods</stitle><addtitle>Nat Methods</addtitle><date>2018-06-01</date><risdate>2018</risdate><volume>15</volume><issue>6</issue><spage>449</spage><epage>454</epage><pages>449-454</pages><issn>1548-7091</issn><eissn>1548-7105</eissn><abstract>Fluorescence localization microscopy has achieved near-molecular resolution capable of revealing ultra-structures, with a broad range of applications, especially in cellular biology. However, it remains challenging to attain such resolution in three dimensions and inside biological tissues beyond the first cell layer. Here we introduce SELFI, a framework for 3D single-molecule localization within multicellular specimens and tissues. The approach relies on self-interference generated within the microscope's point spread function (PSF) to simultaneously encode equiphase and intensity fluorescence signals, which together provide the 3D position of an emitter. We combined SELFI with conventional localization microscopy to visualize F-actin 3D filament networks and reveal the spatial distribution of the transcription factor OCT4 in human induced pluripotent stem cells at depths up to 50 µm inside uncleared tissue spheroids. SELFI paves the way to nanoscale investigations of native cellular processes in intact tissues. Several methods make it possible to obtain depth information in 3D super-resolution microscopy. Here the authors exploit a self-interference phenomenon to allow deep imaging within tissue samples, as well as isotropic imaging.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>29713082</pmid><doi>10.1038/s41592-018-0005-3</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-3573-5387</orcidid><orcidid>https://orcid.org/0000-0002-7820-5327</orcidid><orcidid>https://orcid.org/0000-0002-1986-3493</orcidid><orcidid>https://orcid.org/0000-0003-2216-2839</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1548-7091
ispartof Nature methods, 2018-06, Vol.15 (6), p.449-454
issn 1548-7091
1548-7105
language eng
recordid cdi_hal_primary_oai_HAL_hal_01914540v1
source Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects 631/1647/328/1650
631/1647/328/2238
Actin
Bioinformatics
Biological Microscopy
Biological Physics
Biological specimens
Biological Techniques
Biomedical and Life Sciences
Biomedical Engineering/Biotechnology
Cellular structure
Emitters
Fluorescence
Fluorescence microscopy
Interference
Life Sciences
Localization
Methods
Microscopy
Molecular chains
Muscle proteins
Observations
Oct-4 protein
Physics
Pluripotency
Point spread functions
Position (location)
Proteomics
Resolution (Optics)
Spatial distribution
Spheroids
Stem cells
Three-dimensional imaging
Tissues
Tissues (Anatomy)
title Self-interference 3D super-resolution microscopy for deep tissue investigations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T23%3A57%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-interference%203D%20super-resolution%20microscopy%20for%20deep%20tissue%20investigations&rft.jtitle=Nature%20methods&rft.au=Bon,%20Pierre&rft.date=2018-06-01&rft.volume=15&rft.issue=6&rft.spage=449&rft.epage=454&rft.pages=449-454&rft.issn=1548-7091&rft.eissn=1548-7105&rft_id=info:doi/10.1038/s41592-018-0005-3&rft_dat=%3Cgale_hal_p%3EA572564449%3C/gale_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2050460102&rft_id=info:pmid/29713082&rft_galeid=A572564449&rfr_iscdi=true