ERGODIC POISSON SPLITTINGS
In this paper, we study splittings of a Poisson point process which are equivariant under a conservative transformation. We show that, if the Cartesian powers of this transformation are all ergodic, the only ergodic splitting is the obvious one, that is, a collection of independent Poisson processes...
Gespeichert in:
Veröffentlicht in: | The Annals of probability 2020-05, Vol.48 (3), p.1266-1285 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1285 |
---|---|
container_issue | 3 |
container_start_page | 1266 |
container_title | The Annals of probability |
container_volume | 48 |
creator | Janvresse, Élise Roy, Emmanuel de la Rue, Thierry |
description | In this paper, we study splittings of a Poisson point process which are equivariant under a conservative transformation. We show that, if the Cartesian powers of this transformation are all ergodic, the only ergodic splitting is the obvious one, that is, a collection of independent Poisson processes. We apply this result to the case of a marked Poisson process: under the same hypothesis, the marks are necessarily independent of the point process and i.i.d. Under additional assumptions on the transformation, a further application is derived, giving a full description of the structure of a random measure invariant under the action of the transformation. |
doi_str_mv | 10.1214/19-AOP1390 |
format | Article |
fullrecord | <record><control><sourceid>jstor_hal_p</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01912386v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26922948</jstor_id><sourcerecordid>26922948</sourcerecordid><originalsourceid>FETCH-LOGICAL-c282t-7a51179aa280eb937c163a4b5c4a8b93b22dcd43cfd2f2470657677ce33025473</originalsourceid><addsrcrecordid>eNo9kFFLwzAUhYMoWKcvPgrCXhWiuTdpkzyWbm6FshZbwbeQpi1uTCrNEPz3dnTs6XIu3zkHDiH3wF4AQbyCpnFeANfsggQIkaJKi89LEjCmgYLU6prceL9jjEVSioA8LN9X-SJN5kWelmW-mZdFllZVulmVt-Sqs3vf3p3ujHy8LatkTbN8lSZxRh0qPFBpQxiDrUXF2lpz6SDiVtShE1aNukZsXCO46xrsUEgWhXLsdi3nDEMh-Yw8Tblfdm9-hu23Hf5Mb7dmHWfm-GOgAbmKfmFknyfWDb33Q9udDcDMcQED2pwWGOHHCd75Qz-cSYw0ohaK_wPdbFHs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>ERGODIC POISSON SPLITTINGS</title><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Project Euclid Complete</source><creator>Janvresse, Élise ; Roy, Emmanuel ; de la Rue, Thierry</creator><creatorcontrib>Janvresse, Élise ; Roy, Emmanuel ; de la Rue, Thierry</creatorcontrib><description>In this paper, we study splittings of a Poisson point process which are equivariant under a conservative transformation. We show that, if the Cartesian powers of this transformation are all ergodic, the only ergodic splitting is the obvious one, that is, a collection of independent Poisson processes. We apply this result to the case of a marked Poisson process: under the same hypothesis, the marks are necessarily independent of the point process and i.i.d. Under additional assumptions on the transformation, a further application is derived, giving a full description of the structure of a random measure invariant under the action of the transformation.</description><identifier>ISSN: 0091-1798</identifier><identifier>EISSN: 2168-894X</identifier><identifier>DOI: 10.1214/19-AOP1390</identifier><language>eng</language><publisher>Institute of Mathematical Statistics</publisher><subject>Dynamical Systems ; Mathematics ; Probability</subject><ispartof>The Annals of probability, 2020-05, Vol.48 (3), p.1266-1285</ispartof><rights>Institute of Mathematical Statistics, 2020</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c282t-7a51179aa280eb937c163a4b5c4a8b93b22dcd43cfd2f2470657677ce33025473</cites><orcidid>0000-0002-3810-2606 ; 0000-0002-1504-5792</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26922948$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26922948$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,780,784,803,832,885,27922,27923,58015,58019,58248,58252</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01912386$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Janvresse, Élise</creatorcontrib><creatorcontrib>Roy, Emmanuel</creatorcontrib><creatorcontrib>de la Rue, Thierry</creatorcontrib><title>ERGODIC POISSON SPLITTINGS</title><title>The Annals of probability</title><description>In this paper, we study splittings of a Poisson point process which are equivariant under a conservative transformation. We show that, if the Cartesian powers of this transformation are all ergodic, the only ergodic splitting is the obvious one, that is, a collection of independent Poisson processes. We apply this result to the case of a marked Poisson process: under the same hypothesis, the marks are necessarily independent of the point process and i.i.d. Under additional assumptions on the transformation, a further application is derived, giving a full description of the structure of a random measure invariant under the action of the transformation.</description><subject>Dynamical Systems</subject><subject>Mathematics</subject><subject>Probability</subject><issn>0091-1798</issn><issn>2168-894X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kFFLwzAUhYMoWKcvPgrCXhWiuTdpkzyWbm6FshZbwbeQpi1uTCrNEPz3dnTs6XIu3zkHDiH3wF4AQbyCpnFeANfsggQIkaJKi89LEjCmgYLU6prceL9jjEVSioA8LN9X-SJN5kWelmW-mZdFllZVulmVt-Sqs3vf3p3ujHy8LatkTbN8lSZxRh0qPFBpQxiDrUXF2lpz6SDiVtShE1aNukZsXCO46xrsUEgWhXLsdi3nDEMh-Yw8Tblfdm9-hu23Hf5Mb7dmHWfm-GOgAbmKfmFknyfWDb33Q9udDcDMcQED2pwWGOHHCd75Qz-cSYw0ohaK_wPdbFHs</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Janvresse, Élise</creator><creator>Roy, Emmanuel</creator><creator>de la Rue, Thierry</creator><general>Institute of Mathematical Statistics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-3810-2606</orcidid><orcidid>https://orcid.org/0000-0002-1504-5792</orcidid></search><sort><creationdate>20200501</creationdate><title>ERGODIC POISSON SPLITTINGS</title><author>Janvresse, Élise ; Roy, Emmanuel ; de la Rue, Thierry</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c282t-7a51179aa280eb937c163a4b5c4a8b93b22dcd43cfd2f2470657677ce33025473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Dynamical Systems</topic><topic>Mathematics</topic><topic>Probability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Janvresse, Élise</creatorcontrib><creatorcontrib>Roy, Emmanuel</creatorcontrib><creatorcontrib>de la Rue, Thierry</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>The Annals of probability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Janvresse, Élise</au><au>Roy, Emmanuel</au><au>de la Rue, Thierry</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ERGODIC POISSON SPLITTINGS</atitle><jtitle>The Annals of probability</jtitle><date>2020-05-01</date><risdate>2020</risdate><volume>48</volume><issue>3</issue><spage>1266</spage><epage>1285</epage><pages>1266-1285</pages><issn>0091-1798</issn><eissn>2168-894X</eissn><abstract>In this paper, we study splittings of a Poisson point process which are equivariant under a conservative transformation. We show that, if the Cartesian powers of this transformation are all ergodic, the only ergodic splitting is the obvious one, that is, a collection of independent Poisson processes. We apply this result to the case of a marked Poisson process: under the same hypothesis, the marks are necessarily independent of the point process and i.i.d. Under additional assumptions on the transformation, a further application is derived, giving a full description of the structure of a random measure invariant under the action of the transformation.</abstract><pub>Institute of Mathematical Statistics</pub><doi>10.1214/19-AOP1390</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-3810-2606</orcidid><orcidid>https://orcid.org/0000-0002-1504-5792</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0091-1798 |
ispartof | The Annals of probability, 2020-05, Vol.48 (3), p.1266-1285 |
issn | 0091-1798 2168-894X |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01912386v1 |
source | JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; EZB-FREE-00999 freely available EZB journals; Project Euclid Complete |
subjects | Dynamical Systems Mathematics Probability |
title | ERGODIC POISSON SPLITTINGS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T12%3A28%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ERGODIC%20POISSON%20SPLITTINGS&rft.jtitle=The%20Annals%20of%20probability&rft.au=Janvresse,%20%C3%89lise&rft.date=2020-05-01&rft.volume=48&rft.issue=3&rft.spage=1266&rft.epage=1285&rft.pages=1266-1285&rft.issn=0091-1798&rft.eissn=2168-894X&rft_id=info:doi/10.1214/19-AOP1390&rft_dat=%3Cjstor_hal_p%3E26922948%3C/jstor_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=26922948&rfr_iscdi=true |