Exact Persistence Exponent for the 2 D -Diffusion Equation and Related Kac Polynomials
We compute the persistence for the $2d$-diffusion equation with random initial condition, i.e., the probability $p_0(t)$ that the diffusion field, at a given point ${\bf x}$ in the plane, has not changed sign up to time $t$. For large $t$, we show that $p_0(t) \sim t^{-\theta(2)}$ with $\theta(2) =...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2018-10, Vol.121 (15), Article 150601 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 15 |
container_start_page | |
container_title | Physical review letters |
container_volume | 121 |
creator | Poplavskyi, Mihail Schehr, Grégory |
description | We compute the persistence for the $2d$-diffusion equation with random initial condition, i.e., the probability $p_0(t)$ that the diffusion field, at a given point ${\bf x}$ in the plane, has not changed sign up to time $t$. For large $t$, we show that $p_0(t) \sim t^{-\theta(2)}$ with $\theta(2) = 3/16$. Using the connection between the $2d$-diffusion equation and Kac random polynomials, we show that the probability $q_0(n)$ that Kac polynomials, of (even) degree $n$, have no real root decays, for large $n$, as $q_0(n) \sim n^{-3/4}$. We obtain this result by using yet another connection with the truncated orthogonal ensemble of random matrices. This allows us to compute various properties of the zero-crossings of the diffusing field, equivalently of the real roots of Kac polynomials. Finally, we unveil a precise connection with a fourth model: the semi-infinite Ising spin chain with Glauber dynamics at zero temperature. |
doi_str_mv | 10.1103/PhysRevLett.121.150601 |
format | Article |
fullrecord | <record><control><sourceid>hal_cross</sourceid><recordid>TN_cdi_hal_primary_oai_HAL_hal_01908779v1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>oai_HAL_hal_01908779v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1341-89053eab34c6e876dbeace8907e48bf8c92006522cd03b87d42630789c2334b13</originalsourceid><addsrcrecordid>eNpNkEFLw0AUhBdRsFb_guzVQ-p7u2l2cyxttWLAUtTrstm80Eia1Oy2tP_ehop4mmGYmcPH2D3CCBHk43J99CvaZxTCCAWOcAwJ4AUbIKg0UojxJRsASIxSAHXNbrz_AgAUiR6wz_nBusCX1PnKB2oc8flh2zbUBF62HQ9r4oLPeDSrynLnq7bh8--dDb2xTcFXVNtABX-1ji_b-ti0m8rW_pZdlSehu18dso-n-ft0EWVvzy_TSRY5lDFGOoWxJJvL2CWkVVLkZB2dUkWxzkvtUgGQjIVwBchcqyIWiQSlUyekjHOUQ_Zw_l3b2my7amO7o2ltZRaTzPQZYApaqXTfd5Nz13Wt9x2VfwME05M0_0iaE0lzJil_AMJWaHM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Exact Persistence Exponent for the 2 D -Diffusion Equation and Related Kac Polynomials</title><source>American Physical Society Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Poplavskyi, Mihail ; Schehr, Grégory</creator><creatorcontrib>Poplavskyi, Mihail ; Schehr, Grégory</creatorcontrib><description>We compute the persistence for the $2d$-diffusion equation with random initial condition, i.e., the probability $p_0(t)$ that the diffusion field, at a given point ${\bf x}$ in the plane, has not changed sign up to time $t$. For large $t$, we show that $p_0(t) \sim t^{-\theta(2)}$ with $\theta(2) = 3/16$. Using the connection between the $2d$-diffusion equation and Kac random polynomials, we show that the probability $q_0(n)$ that Kac polynomials, of (even) degree $n$, have no real root decays, for large $n$, as $q_0(n) \sim n^{-3/4}$. We obtain this result by using yet another connection with the truncated orthogonal ensemble of random matrices. This allows us to compute various properties of the zero-crossings of the diffusing field, equivalently of the real roots of Kac polynomials. Finally, we unveil a precise connection with a fourth model: the semi-infinite Ising spin chain with Glauber dynamics at zero temperature.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.121.150601</identifier><language>eng</language><publisher>American Physical Society</publisher><subject>Condensed Matter ; Mathematical Physics ; Mathematics ; Physics ; Probability ; Statistical Mechanics</subject><ispartof>Physical review letters, 2018-10, Vol.121 (15), Article 150601</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1341-89053eab34c6e876dbeace8907e48bf8c92006522cd03b87d42630789c2334b13</citedby><cites>FETCH-LOGICAL-c1341-89053eab34c6e876dbeace8907e48bf8c92006522cd03b87d42630789c2334b13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01908779$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Poplavskyi, Mihail</creatorcontrib><creatorcontrib>Schehr, Grégory</creatorcontrib><title>Exact Persistence Exponent for the 2 D -Diffusion Equation and Related Kac Polynomials</title><title>Physical review letters</title><description>We compute the persistence for the $2d$-diffusion equation with random initial condition, i.e., the probability $p_0(t)$ that the diffusion field, at a given point ${\bf x}$ in the plane, has not changed sign up to time $t$. For large $t$, we show that $p_0(t) \sim t^{-\theta(2)}$ with $\theta(2) = 3/16$. Using the connection between the $2d$-diffusion equation and Kac random polynomials, we show that the probability $q_0(n)$ that Kac polynomials, of (even) degree $n$, have no real root decays, for large $n$, as $q_0(n) \sim n^{-3/4}$. We obtain this result by using yet another connection with the truncated orthogonal ensemble of random matrices. This allows us to compute various properties of the zero-crossings of the diffusing field, equivalently of the real roots of Kac polynomials. Finally, we unveil a precise connection with a fourth model: the semi-infinite Ising spin chain with Glauber dynamics at zero temperature.</description><subject>Condensed Matter</subject><subject>Mathematical Physics</subject><subject>Mathematics</subject><subject>Physics</subject><subject>Probability</subject><subject>Statistical Mechanics</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpNkEFLw0AUhBdRsFb_guzVQ-p7u2l2cyxttWLAUtTrstm80Eia1Oy2tP_ehop4mmGYmcPH2D3CCBHk43J99CvaZxTCCAWOcAwJ4AUbIKg0UojxJRsASIxSAHXNbrz_AgAUiR6wz_nBusCX1PnKB2oc8flh2zbUBF62HQ9r4oLPeDSrynLnq7bh8--dDb2xTcFXVNtABX-1ji_b-ti0m8rW_pZdlSehu18dso-n-ft0EWVvzy_TSRY5lDFGOoWxJJvL2CWkVVLkZB2dUkWxzkvtUgGQjIVwBchcqyIWiQSlUyekjHOUQ_Zw_l3b2my7amO7o2ltZRaTzPQZYApaqXTfd5Nz13Wt9x2VfwME05M0_0iaE0lzJil_AMJWaHM</recordid><startdate>201810</startdate><enddate>201810</enddate><creator>Poplavskyi, Mihail</creator><creator>Schehr, Grégory</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>201810</creationdate><title>Exact Persistence Exponent for the 2 D -Diffusion Equation and Related Kac Polynomials</title><author>Poplavskyi, Mihail ; Schehr, Grégory</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1341-89053eab34c6e876dbeace8907e48bf8c92006522cd03b87d42630789c2334b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Condensed Matter</topic><topic>Mathematical Physics</topic><topic>Mathematics</topic><topic>Physics</topic><topic>Probability</topic><topic>Statistical Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Poplavskyi, Mihail</creatorcontrib><creatorcontrib>Schehr, Grégory</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Poplavskyi, Mihail</au><au>Schehr, Grégory</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exact Persistence Exponent for the 2 D -Diffusion Equation and Related Kac Polynomials</atitle><jtitle>Physical review letters</jtitle><date>2018-10</date><risdate>2018</risdate><volume>121</volume><issue>15</issue><artnum>150601</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>We compute the persistence for the $2d$-diffusion equation with random initial condition, i.e., the probability $p_0(t)$ that the diffusion field, at a given point ${\bf x}$ in the plane, has not changed sign up to time $t$. For large $t$, we show that $p_0(t) \sim t^{-\theta(2)}$ with $\theta(2) = 3/16$. Using the connection between the $2d$-diffusion equation and Kac random polynomials, we show that the probability $q_0(n)$ that Kac polynomials, of (even) degree $n$, have no real root decays, for large $n$, as $q_0(n) \sim n^{-3/4}$. We obtain this result by using yet another connection with the truncated orthogonal ensemble of random matrices. This allows us to compute various properties of the zero-crossings of the diffusing field, equivalently of the real roots of Kac polynomials. Finally, we unveil a precise connection with a fourth model: the semi-infinite Ising spin chain with Glauber dynamics at zero temperature.</abstract><pub>American Physical Society</pub><doi>10.1103/PhysRevLett.121.150601</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2018-10, Vol.121 (15), Article 150601 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_hal_primary_oai_HAL_hal_01908779v1 |
source | American Physical Society Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Condensed Matter Mathematical Physics Mathematics Physics Probability Statistical Mechanics |
title | Exact Persistence Exponent for the 2 D -Diffusion Equation and Related Kac Polynomials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T22%3A22%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exact%20Persistence%20Exponent%20for%20the%202%20D%20-Diffusion%20Equation%20and%20Related%20Kac%20Polynomials&rft.jtitle=Physical%20review%20letters&rft.au=Poplavskyi,%20Mihail&rft.date=2018-10&rft.volume=121&rft.issue=15&rft.artnum=150601&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.121.150601&rft_dat=%3Chal_cross%3Eoai_HAL_hal_01908779v1%3C/hal_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |